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Abstract

The results of over 2 decades of neutrino experiments
have revealed neutrino flux rates significantly below those
predicted by standard solar models - thus, the Solar Neutrino
Problem (SNP). The Borexino experiment, through measurements
of the 'Be neutrinos, will provide strong evidence for either
an astrophysical explanation to the SNP or a neutrino physics
solution. It will also have the capability to detect time
variations in the flux rate, thereby confirming or denying the
day-night effect prediction offered by the MSW Theory.

The success of Borexino lies in achieving ultra-low
background levels. These levels are so low, that a Counting
Test Facility (CTF) has been proposed to examine the purity of
Borexino’s components. Two designs for the CTF have been
offered; one, the CTF Upgrade, allows for 3D positional
measurements. In order to achieve this 3D resolution while
minimizing the number of photomultiplier tubes needed, large
light collectors have been proposed.

The design of light collectors optimal for the CTF
Upgrade has been investigated. The Edge-Ray Principle,
derived for the Winston CPC cone (ideal for planar PMT's and
an infinite source), has been extended to the construction of
a String Method cone ideal for a spherical PMT and a spherical
finite source. The theoretical performance of the String
‘Method cone has been examined by computer Monte Carlo
simulations and shown to be optimal for the CTF layout,
particularly in terms of its radial transmission. Routines
have been presented which calculate the coverage of an array
of SM cones and the corresponding value for the number of
photoelectrons detected / MeV incident neutrino energy.

A fabrication method, the Panel Technique, has been
developed in detail, offering an option for the construction
of these large light cones. Two prototype light collectors
have been designed and preliminary construction has been made.
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Chapter 1 - Background

A. Qverview

For over 25 years now scientists have been actively
investigating the solar neutrino production rate. Although
measurement techniques have steadily improved and background
noise (e.g. cosmic rays) has been markedly reduced, the
measured rate still falls far short of rates calculated from
the standard solar model!. This empirical discrepancy is
infamously knows as the Solar Neutrino Problem (SNP). Granted
no significant errors with the experimental techniques, the
SNP points to a flaw in our astrophysical understanding of the
solar interior or to new properties neutrinos that would alter
the standard theory of electroweak interaction. With the fate
of such fundamental concepts at stake, scientists search for
further evidence that will finally resolve the SNP.

Presently, a team of scientists from Princeton, MIT,
AT&T, Italy and Germany have developed a proposal to construct
an ultra-low background neutrino detector to further
investigate the SNP. The Borexino Project is a scintillator
detector allowing real-time analysis of solar neutrinos, in
particular the 'Be neutrino of the pp-chain (Section 1.C).
Observations of the flux of these neutrinos will provide
further insight into the SNP possibly identifying whether the
solution lies in new astrophysical or electroweak theories.
This thesis focuses on a specific element of the overall
Borexino Project, the optics of Borexino’s Counting Test

Facility (CTF). The CTF is an experiment proposed to test the



collaborations’s ability to achieve very low background levels
for the Borexino Project. I will begin with a discussion of
the standard solar model and the SNP describing the MSW
Theory, and the *’Cl, Kamiokande II and Gallium experiments.
The goals and significant characteristics of Borexino and the
CTF will also be addressed. The following two chapters focus
on the design and fabrication of light collectors for the CTF.
Although my efforts were directed primarily under the
constraints of the CTF, the results will certainly be
applicable to Borexino and may offer insight into many other

light (radiation) detection projects.

B. Standard Solar Model

Due to the Sun’s proximity to Earth, it has historically
been the most intensely observed star. As such, precise
measurements of the Sun’s radius, mass and luminosity have
been made with high precision. Armed with a wealth of
observational data, scientists have developed models of
stellar evolution that predict and explain the present
measurements. The standard solar model, the model most widely
accepted, offers specific predictions for the neutrino fluxes
and energy spectrums observable on Earth. It is the
discrepancy between these predictions and the observed
experimental data that define the SNP.

The standard solar model is founded on several
assumptions. First, the Sun is assumed to exist in
hydrostatic equilibrium - its interior radiation and particle
pressures balance exactly its internal gravitational forces.
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This is essential to prevent free-fall collapse or expansion.
Second, energy transport in the solar interior is assumed to
be primarily due to photon diffusion. Third, the main source
of the radiated photons and neutrinos is nuclear fusion.
Specifically, the standard solar model states that the pp
chain (Section 1.C) is the main process of nuclear fusion in
the Sun. Lastly, the initial solar interior is assumed to
have been chemically homogenous, with changes in the chemical
abundances a function of nuclear reactions only.

In addition to these 4 basic premises, Bachall and
Pinsonneault? have recently introduced the notion of helium
diffusion to the standard solar model. They point out that
the diffusion of helium (and other heavy elements) affects the
elemental abundance and radiative opacity in the stellar core,
consequently affecting the predicted solar neutrino fluxes.

In their paper, Bachall and Pinsonneault introduced the
effects of helium diffusion into the standard solar model and
calculated the adjusted neutrino fluxes for the most important
neutrino experiments. Although some results I quote do not
include the helium diffusion effects (i.e. all sources before
1992), all data related to the predicted neutrino fluxes of
experiments is from the helium diffusion standard solar model
- denoted the SSMH.

As Bachall points out?®, the standard solar model not only
coincides with the observational data, but it also predicts
several impressive stellar relationships. In particular, the
model postulates a stellar mass-luminosity relationship which
*is in agreement with observations on almost two orders of
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magnitude in mass®". The standard theory of stellar evolution
has been applied to stars of a wide range of physical and
chemical characteristics without significant deviations. It
serves as the foundation for a large part of astrophysics and
any changes to its postulates could have widespread effects on:
our understanding of the universe. Thus, the inconsistencies
noted in the SNP between the solar standard model and observed

neutrino rates have received great attention.

C. Nuclear Generation and Neutrino Flux

In order to offer a more through understanding of the
neutrino predictions given by the standard sblar model, I will
develop a few of the main points on the theoretical solar
nuclear processes. The primary process of energy generation
in the Sun is the nuclear fusion of 4p into an alpha particle,

two positrons and an electron flavored neutrino,

dp -~ a + 2e* + 2v, .
The total energy released in the process is approximately
26.731 MeV, with ~.6 MeV (on average) carried away by
neutrinos. This process is responsible for all of the solar
photons and neutrinos that we observe on Earth.

The principal nuclear reaction in the Sun is the proton-
proton chain (pp chain). Table 1.1 summarizes the pp chain in
the Sun. Reaction la, the pp reaction, is the most frequent
initial reaction and is therefore responsible for most of the
energy generation in the Sun. The neutrinos it produces, pp

neutrinos, have the highest predicted flux, yet because of



Reaction Number  Terminationt . v energy
(%) (MeV)
p+p—2H+et +y, la 100 < 0.420
or
pt+e +p— 2H + V, 15 (pep) 0.4 1.442
H+p— 3He + v 2 100
SHe + *He - a + 2p 3 85
or
3He + *He — "Be + v 4 15
"Be + e~ —='Li + v, 5 15 (90%) 0.861
(10%) 0.383
Li+p—2a 6 15
or ’
"Be+p— 8B+~ 7 0.02
8B—8Be* + e*+ 4, 8 0.02 <15
8Be* —» 2 a 9 0.02
or
3He + p — “He + e* + v, 10 (hep) 0.00002 <18.77

tThe termination percentage is the fraction of terminations of the pp chain,
4p — a + 2e™ + 2ve, in which each reaction occurs. The results are averaged
over the model of the current Sun. Since in essentially all terminations at
least one pp neutrino is produced and in a few terminations one pp and one
pep neutrino are created, the total of pp and pep terminations exceeds 100%.

Table 1.1: The pp-chain in the Sun.

[From BAH 89)
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their low energy (£.420 MeV) they are very difficult to detect
in relation to other neutrinos. Reactions that follow,
however, lead to the production of other, higher energy
neutrinos.

With respect to issues discussed in this thesis, the most
important of these reactions involve ’'Be and °B (i.e. reactions
4,5,7 and 8). 1In reaction 4, a ‘He nucleus captures an
already excited alpha particle forming 'Be and releasing a
gamma ray. Nearly 100% of the time the 'Be nucleus will
capture an electron forming 'Li and emit an electron flavored
neutrino with energy .861 Mev (90%) or .383 Mev (10%). Very
rarely, the 'Be nucleus absorbs a proton forming °®B and
releasing a gamma ray (reaction 7). The °®B nucleus will then
beta decay to ®Be* releasing a positronium ion and a neutrino
with a continuum of energies less than 15 Mev. This reaction
occurs approximately once in every 5000 terminations of the pp
chain and therefore the ®B neutrinos have a low predicted
flux. Figure 1.1 shows the solar neutrino spectrum for the pp
chain for the temperatures and densities of the Sun as
predicted by the standard solar model. Note the continuum
spectrum of the °B neutrinos with a high maximum energy, vet
very small flux. The lines labeled 'Be designate the line
fluxes of the two energies of 'Be neutrinos. Because of their
higher flux and monoenergetic characteristic, experiments
involving the measurement of 'Be have some advantages over °B

detectors. These differences are developed in later sections.



D. MSW Theory

Currently, the most investigated non-astrophysical
explanation for the SNP is the MSW Theory, named after
Mikheev, Smirnov and Wolfenstein. Developed out of
preliminary work by antecorvo4 and Wolfenstein®, the MSW
Theory proposes that neutrino oscillations in matter cause a
shift in the ratios of neutrino flavors. Applied to the SNP,
it is possible that a significant number of v, produced in the
solar interior oscillate into another flavor (e.g. muon
neutrinos v,). Since most of the neutrino experiments to date
are flavor sensitive to v, (designated charge-current
experiments), neutrino oscillations could explain the reduced
observed fluxes. Because of the beautiful simplicity of its
explanation and its link to other fields (e.g. cosmological
discussions of dark matter), any discussion of the SNP ought
to mention its implications. Central to the MSW Theory,
however, is the notion that at least one type of neutrino have
a finite mass, a hotly debated prediction in high energy
physics.

If neutrinos are massive, it is possible that the flavor
eigenstates do not exactly match the mass eigenstates, but are
actually mixtures (orthogonal combinations) of them. The
following is an overview of the physics behind the MSW Effect.
To simplify the discussion, we consider only two neutrino
flavors to be coupled to one another (e.g. V., v,). 1In terms
of the mass eigenstates, [v,> and |v,>, the flavor eigenstates

are represented by,



[ve>, = cosBg e *E:fly,>+ sinb, e 15F|v,>
lv,>. = -8inB e *%F|v >+ cosB; e *%F|v,>

r

where h=1 and E; is the energy of the ith mass eigenstate. 1In
this notation the index S indicates that the mixing angle 90 is
dependent on the medium where the oscillation occurs (i.e.
vacuum or matter). We solve for the probability of
oscillation by taking the square of the inner product of the

two eigenstates. In vacuum, the result is,

O s TR 4nE
|<v,|vg>|* = sin?26, sin’(—L:) w/ LV!W .

R is the distance travelled in time t, L, is the vacuum
oscillation length, and m; is the mass of the ith mass
eigenstate. For oscillation in a vacuum, Bachall & Frautschi®
calculated the probability that a v, remains a v, in terms of
the mixing angle by averaging over a spectrum of energies

characteristic of the Sun. Their result,

[<velve>

clavg * 1 - %sinzzﬂv ,

suggests that large 0, are necessary to explain the SNP in
terms of vacuum oscillations. Although vacuum oscillations
would reduce the neutrino flux, it is generally considered
that the effect is not large enough to fully account for the
SNP. The possibility of neutrino oscillations in matter (i.e.
the Sun and Earth), on the other hand, leads to more
interesting results and is the basis of the MSW Effect.

It is possible to express the vacuum oscillations in

terms of a mass matrix deriving the same relationships as



above’. Wolfenstein has shown® that in matter, one most
consider an additional factor in the mass matrix due to
charged-current scattering (a result of the electrons in
matter) which affects only v,. Wolfenstein described this
difference in terms of an index of refraction related to
forward scattering by the optical theorem. The expression for

n is defined by the relation:

27N,

kin - 1) = ”

£(0) =GN, ,

with G; the Fermi coupling constant, N, the number density of
electrons and k the wave vector of an incident particle.
Physically, the index of refraction, which éxists only for v,
causes a phase shift between v, and other flavored neutrinos

with characteristic length,

1 = 2% - 2.7 x 10%m
° k(n -1) Pe )

where p, is the electron density in the medium. Therefore,
there is a change in both the mixing angle (now written 0,)
and oscillation length L, given by,

sin?20, = sin?20, ()2

L,

L2 =L2[1 + (¥)2 - 2. ¥¢c0520,] 1
1, 1,

for a medium with constant density.

Mikheev and Smirnov® took the result of Wolfenstein one
step further, developing the effects of a medium with varying
density, as in the case of the Sun. Their observation is that

the value for sin®20, has a resonance value for small values of
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sin?20,. They showed that this resonance occurs at L,/1, =
cos20, and proposed a resonance density p,., that would greatly
enhance the oscillations. Furthermore, they proposed that the
resonance condition would be met in the varying density of the
Sun and suggested this effect could explain the low observed
neutrino rates.

Mikheev and Smirnov advanced 3 possible solutions to the
varying density case: (1) the adiabatic solution (a slowly
changing density) where neutrinos ‘adjust’ themselves to the
varying density as they travel through the medium; (2) the
non-adiabatic solution where the density changes too quickly
for them to ‘adjust’; and (3) the large mixing-angle solution
where high values of 0, are assumed. The 3 solutions have
been applied to the data of the major neutrino experiments,
constraining the MSW parameters - Am? and sin®@, - to specific
ranges. The non-adiabatic and large mixing-angle solutions
are the most widely accepted while the adiabatic solution has
been largely disputed by the work of Bethe!” and others. The
parameters are commonly graphed against one another along SNU
contours in what is referred to as an MS diagram (Figure 1.2).

In addition to neutrino oscillations within the solar
medium, there ought to be similar interactions within the
Earth reversing the process to an extent. The effect,
according to Mikheev and Smirnov!!, ought to be great enough
that a diurnal variation could be studied experimentally
offering positive proof of the MSW Theory. Several
experiments, including Borexino, will provide evidence for the
‘day-night effect’ in the next few years. Observed or not, an
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examination of the day-night effect will offer deep insight

into the solution of the SNP.

E. Experiments

1. 7%Cl Experiment

Historically, the most important neutrino experiment has
been the *’Cl experiment designed and constructed by Davis et
al.'? in the 1960’'s. It is located 4850 ft below ground in
the Homestake Mine, in Lead, South Dakota and was the first
and only experiment of its kind for nearly two decades.
Consequently, it provided the first evidence for the SNP,
inspiring the next generation of neutrino detectors.

As discussed in Section 1.C, in approximately 1 of 5000
terminations of the pp chain, a reaction involving ®B occurs
resulting in a neutrino with a maximum energy of < 15 MeV.
The event rate of the 3'Cl experiment is dominated by these °B
neutrinos. They are energetic enough to excite *Cl to the
énalogous super-ground state 3Ar via the charged-current

reaction,

vo+Cl ~e” + ar

with threshold energy E.,, = .814 Mev. Since it is a charged-
current reaction, the ¥Cl experiment is sensitive only to v,.
Table 1.2 shows all of the calculated rates predicted from the
standard solar model for a *’Cl detector. The SNU is the unit
of number of events per target atom per second, chosen equal

to 107%¢ s! for convenience. The ®B neutrinos dominate the
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Neutrino Cl

source (SNU)

pp 0.0

pep 0.2

"Be 1.2

‘B 6.2

BN 0.1

50 0.3 :
- Total 80430 |

Table 1.2: Capture rates predicted by the standard
solar model for a ¥'Cl detector.
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experiment. [From BAH 89]
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capture rate because of their higher energy. Unfortunately,
because ®B neutrinos have such a low flux, the *'Cl experiment
has a very low count rate with correspondingly small
statistical power.

By recovering and measuring the levels of *’Ar from the
3¢l detector for a given period of time, Davis et al. has
experimentally measured the solar neutrino event rate!’.

Figure 1.2 shows the‘experimental results over the last 20
years for the chlorine solar neutrino experiment with
comparison to the predicted 7.9 SNU predicted by the standard
solar model without helium diffusion [The new predicted value
given by the SSMH is 8.0 + 3.0 SNU, a very élight difference.]
It is very clear that the observed rate is well below the
calculated rate. Even assuming that the entire observed flux
is due to ®B neutrinos (reducing the predicted rate to 6.2
SNU), there are still too few neutrinos. Clearly, then,
either there is a discrepancy in the prediction of the ®B flux
for the standard solar model or the neutrinos are undergoing
interactions between the center of the Sun and Earth (as in
the MSW theory).

A few final comments on the *’Cl experiment need to be
addressed. Because it is an indirect counting experiment -
one calculates the rate by measuring *’Ar levels well after the
reaction has taken place - there is a limited amount of
information one can derive from the observed rates. For
instance, it is impossible to differentiate between events
(e.g. rates of °B and 'Be neutrinos) which is essential in
testing the SSM. Furthermore, it is difficult to determine

14



even i1f the events originate in the Sun or some other galactic
phenomenon. The ?'Cl experiment was very successful in
identifying the SNP, yet it does not have the experimental
power to offer conclusive answers to its observations. Thus,
the need for further neutrino experiments.
2. Kamiokande II

Unlike the *'Cl experiment, Kamiokande II (KII) is a
neutrino-electron scattering experiment which focuses solely
on ®B neutrinos. Neutrino-electron scattering is a neutral-
current reaction sensitive to any neutrino flavor, yet most
sensitive to v,. KII is a large water Cherenkov detector
located 1 km beneath ground in the Kamohn metal mine in the
Japanese Alps. The characteristics of a neutrino-electron
scattering experiment offer KII several advantages over the
¢l experiment. In KII, the mean direction of the scattered
electrons is measurable by observing their track paths.
Therefore, one can verify the solar origin of neutrino events
with statistical accuracy. Secondly, neutrino events are
recorded almost instantaneously. This has obvious advantages
over the delayed measurements of the *’Cl experiment as well as
other indirect counting experiments. Lastly, the threshold
energy for KII is high enough such that only ®B can be
detected. Thus, by measuring the energy spectrum of the
recoil electrons one can derive a fairly accurate measurement
of both the energy distribution and flux of the ®B neutrinos
and match these results with the predicted values.

The first of the second generation neutrino experiments
to record significant data, scientists looked toward KII to

15



possibly refute the results of the *’Cl experiment. The data
from Kamiokande II, however, match closely Davis’s results.
Totsuku!* and Nakahatu'® report a 90% confidence upper limit

on the ®B flux of

¢ (°B) < .55¢(®B) g4q,
An improved version of KII, KIII, has recently publjished
data'® supporting the results reported for KII. The combined
result of KII and 395 days of the KIII experiment is .50%.07
of the SSMH prediction. As with the *’Cl experiment, the
initial phase of the Kamiokande II experiment was not pbwerful
enough to test theories like the MSW effect, and it is
unlikely that KIII could provide definitive evidence either.
Another stage of KII - the Super Kamiokande - has also been
proposed, and provided low enough backgrounds are achieved, it
ought to offer the first evidence of diurnal and temporal
variations in the neutrino rate.
3. Gallium Experiments

Two radiochemical experiments, GALLEX'’ and SAGE!, are
measuring the flux of the low-energy pp neutrinos from the pp
reaction (reaction 1 of Table 1.1). Because this reaction is
the main reaction responsible for energy generation in the
Sun, the pp neutrinos have the highest neutrino flux and are
very important to investigate. The reaction central to the

experiments,
v, + ''Ga - "'Ge + e~ ,
has a very low threshold energy (E.,, = .23MeV) and therefore
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allows measurement of the low-energy pp neutrinos. The
specific details of the experiments are similar to the
radiochemical %'Cl experiment and are not worth developing
here.

The results from the gallium experiments, as with the *’Cl
and Kamiokande experiments, report pp neutrino fluxes far
below those predicted from the SSMH. The GALLEX result!® is
83121 SNU and the most recent (also the highest) SAGE result?®
is 85*% SNU, both well below the predicted SSMH value 132!
SNU. Combining all of the SAGE and GALLEX data, the gallium
result is 71%15 SNU (.54 of the SSMH prediction).

The gallium results are important, not only because they
further underscore the SNP, but because they place further
constraints on the core temperature of the Sun (T.) and the
MSW parameters. Bludman et al.?! have recently evaluated the
data for the *’Cl, KII, gallium and KIII experiments. Their
analysis suggests that:

"..a purely astrophysical solution to the solar neutrino
problem is strongly disfavored by the data: the Homestake
[*’C1] and Kamiokande data together are incompatible with
any temperature in the Sun; the central values of both
the SAGE and GALLEX results require a large reduction of
T. when they are fit to a cooler Sun.*
In short, Bludman et al. refutes the possibility that an
astrophysical explanation based on T. could explain the SNP.
Only a radical change in the SSM or new neutrino physics would
suffice. Taking the MSW effect as the most likely solution to
the SNP, they have fit (Figure 1.4) the experimental data to

the MSW parameters, constraining them to two small regions:

non-adiabatic oscillations with Am? = (.3-1.2)x10°° eV?,
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sin’@, = (.4-1.5)x107%, or large mixing-angle oscillations with
Am? = (.3-3)x107° eV?, sin’@, = .6 - .9. Measurements on yet
other neutrinos in the spectrum will reveal deeper insight
into the analysis by Bludman. This is just one of the merits
of the Borexino experiment, whose focus is upon the "Be

neutrinos.

F. Borexino

The Borexino experiment offers a unique approach to the
SNP. Initiated in 1987 by a group from AT&T, Drexel and MIT,
Borexino has evolved into an experiment focﬁsed on examining
low energy solar neutrinos (particularly ’Be neutrinos) by
analyzing the photons emitted from an organic scintillator.
The success of Borexino'’s propositions lies in achieving very
low backgrounds, both within the scintillator fluid and the
supporting experimental apparatus. The experimental site is
located in the underground laboratory of the Gran Sasso
tunnel, 200km east of Rome, Italy.

Figure 1.5 is an artist’s rendition of Borexino within
the Gran Sasso tunnel. One notes an inner vessel filled with
scintillator fluid being watched by a 3-D PMT array. Recoil
electrons emitted via neutrino interactions are absorbed in
the organic fluor releasing ~ 12,000 photons/Mev. These
photons are detected ’‘immediately’ by the PMT array allowing
real-time analysis. Figure 1.6 and Table 1.3 show the
predicted neutrino rates for the 100 ton fiducial volume of
Borexino as a function of energy range. The .834 MeV "Be
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Process v flux Events/day in 100 tons
10°/cm3s 20.25 MeV 0.25+0.66 MeV
Ve vy Ve vy
PP 6.000 0 0 0 0
. "Be 0.423 41.2 8.70 41.2 8.70
pep 0.014 3.5 0.78 1.5 0.30
13N 0.061 4.7 0.90 4.0 0.80
150 0.052 8.0 1.50 4.4 0.90
B 0.0006 1.0 0.05

Table.1.3: Counting rates expected in 100 ton fiducial volume of
Borexino [From NSF 92]
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neutrinos are expected to dominate the count rate of both
electron and muon flavored neutrinos.

If the ultra-low backgrounds are achieved in Borexino the
collaboration expects to record from 4,000 - 20,000 neutrino
events yearly (10 - 50 events daily) dependent on the Am®
parameter associated with the MSW Theory. Borexino would be
the first detector of its kind to detect so many neutrino
events in real time. Such an experiment has considerable
scientific merit. First, Borexino will verify predictions
from the Kamiokande, *’Cl, and gallium experiments whose
neutrino flux measurements suggest a lower flux of 'Be
neutrinos than predicted. An accurate measurement of the ’Be
rate would clarify the interpretation of these experiments.

In particular, if a high 'Be flux (near SSMH prediction) is
observed, it would almost certainly point to the need for a
neutrino physics solution to explain the gallium experiments.
A low rate of "Be neutrinos, meanwhile, may suggest a radical
astrophysical solution (based on Bludman’s results). At the
same time, it would place constraints on the MSW parameters,
possibly supporting Bludman'’s results.

Furthermore, Borexino'’s unique characteristics will lend
itself to significant time variation observations. The
deviation of the Earth’s distance from the Sun ought to create
a 7% difference in neutrino flux between aphelion and
perihelion. Borexino will be able to measure this difference
and thereby offer indisputable evidence of the solar origin of
the neutrino events. Borexino will also provide for the
investigation of the day/night effect. As discussed in
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Section 1.D, the theory predicts a diurnal variation in the
observed fluxes due to the oscillations within the Earth.
Because 'Be neutrinos are essentially monoenergetic source,
the day-night effect ought to appear as a sharp variation the
flux as a function of the solar angle. [Figure 1.7 is a graph
of the neutrino rate variations for the Borexino project as
predicted from the MSW Theory]. Borexino would be able to
observe this effect provided the parameter Am?’ is in the range
3x10® - 10° ev®. 1If such a variation is observed, it would
provide conclusive evidence of the MSW effect.

Lastly, and not to be understated, the scientific
endeavors which lead to the final design, construction and‘
operation of Borexino will display a variety of techniques
pertinent to future low background experiments. It is this
notion of low background which lies central to the success of
Borexino. Before the construction of Borexino, however, the
collaboration needs to demonstrate their ability to achieve
very low levels of U, Th, !C within the experimental design
(in particular the scintillator). The levels are so low that
present measuring techniques cannot provide sufficient
evidence. As such, the Borexino project has proposed the
Counting Test Facility (CTF), a smaller scale experiment to
investigate several important points of the Borexino

background goals.

G. CTF
1. Goals
As outlined in NSF (Dec 92)2 the CTF is being designed
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Figure 1.7: Possible Neutrino Rate Variatons: The effect of earth
regeneration on the counting rate in Borexino in the Be neutrino signal window (including
contributions from all neutrino sources listed in Table 1.3). Plotted are the differences
of counts/12 hours for the no-earth and transmitted cases as a function of the solar angle
at Gran Sasso (from A. J. Baltz priv. comm). The different curves represent different

values of Am* (in 10° ev?) for a fixed value of sin?2® = .71 in the vertical allowed region
of the MSW map. [From NSF 92]
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to achieve the following goals:
1. Measure the U and Th impurities in the scintillator
with a sensitivity of 5x107'°g/g, or better.
2. Measure the K impurity in the scintillator with
sensitivity of 10™* g/g.
3. Measure the *C/*C ratio in the scintillator with a
sensitivity of 107! g/g.
4. Ensure that the background of the surrounding
apparatus (e.g. inner vessel) is within an
acceptable level.
5. Test the effectiveness of proposed scintillator
purification techniques.
Presently, there are two versions of the CTF being considered,
the 2-arm CTF and the CTF Upgrade. Both designs address the
above goals, vet with significantly different approaches.
2. 2-Arm CTF
Figure 1.8 is a schematic representation of the 2-Arm
Counting Test Facility as recently proposed by the collaboration
to NSF. The scintillator is contained within a 1lm vessel (likely
a nylon bag) supported by two long support structures - arms -
which double as light guides to two PMT arrays. Because the
PMT’'s and their bases have considerable radioimpurities
associated with them, they are separated ~2.5m from the
scintillator vessel. The efficiency of light detection for each
arm has been calculated via ray tracing programs to be ~100
photoelectrons/MeV, a significant yield. Outside of the 2-Arms
and PMT array is a 1llm diameter x 10m high carbon steel tank
filled with highly purified deionized water, which acts as a
shield for the fiducial volume.
There are some important drawbacks to the 2-Arm design.
First, the 2 Arms do not allow for accurate 3-dimensional
positioning measurements. The absence of a 3-dimensional

analysis will be very significant if the inner vessel and light
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Figure 1.8: General layout of the 2-Arm CTF with a nylon inner vessel

27



guides have dominant surface radiocactivity. It would be
necessary to discriminate neutrino events which occur at the edge
of the fiducial volume from background events caused by
radioimpurities. A proposal has been made to use 6 Arms to
provide for 3-dimensional analysis of the decay site, yet this
approach would have difficult engineering and costly economic
problems associated with it. With growing fears over the surface
purity of the inner vessel, it becomes all the more important to
design an economical 3-D CTF that would not create significant
delays.

3. CTF Upgrade

Figure 1.9 is a schematic representation of one model of the
CTF Upgrade. Note the similarities to the Borexino design.
Within the carbon steel tank designed for the CTF is a 3.5m
stainless steel tank similar to the main tank of Borexino. This
tank houses an inner bag filled with scintillator fluid and
fluor, suspended against all buoyant forces by nylon straps. The
fidﬁcial volume would be defined within this bag. Outside the
inner vessel will be 1 of 3 highly purified fluids: deionized
water, mineral oil, or xylene. This fluid serves as a shield for
the fiducial volume much like the deionized water in the 2-Arm
CTF design.

Also similar to the Borexino design and central to the
success of this CTF Upgrade proposal is a 3-D PMT array with
large light guides. As in the 2-Arm design, the PMT bases have
high levels of radioimpurities associated with them and must be
placed ~2.5m away from the fiducial volume. At this distance, in
order to keep PMT and electronics costs within a respectable
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level (~64 PMT’s) and collect enough photons at the same time,
large light cones (1 - 1.5m long) will need to be designed and
fabricated. The cones must collect a high percentage of the
light within a very specific geometry such that enough events are
detected while accurately determining the position of the events.
Not only does the CTF Upgrade mirror Borexino in design, it may
actually be able to perform some of the same solar neutrino
physics. With a photoelectron output of 200/MeV incident
neutrino energy, estimates made by Calaprice (priv. comm.) and
others suggest a count rate on the order of 10/day for the CTF
Upgrade. This would be high enough to perform calculations on
the day-night effect, an extremely impressive prospect. These
results are very contingent on the background levels achieved in
the CTF, and the success of the designed optics (i.e. light
cones). The focus of my senior thesis has been the investigation
of the design and fabrication of light collectors for the CTF
Upgrade. The rest of this paper details this research and offers

proposed solutions to the optics for the CTF Upgrade proposal.
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Chapter 2 - Design

A. The Maximum Concentration of an Ideal Light Collector

A thorough discussion of the concentrator properties of
an optical system must involve principles related to
Liouville’s Theorem. Extending Liouville’s Theorem of
Statistical Mechanics to geometric optics, I will derive the
maximum concentration ratio of an ideal light concentrator
with a flat exit aperture to be used with a planar PMT. 1In
terms of Statistical Mechanics, Liouville’s Theorem requires
that a specific region of phase space always contain the same
number of states, regardless of the coordinate system.
Classically, there is a continuum of phase states and
therefore one can only consider an average density of states
which would be proportional to dxdydpdq (in 2D), with p and g
the generalized momenta. In quantum mechanics the number of
states in a finite element of volume is exact, and is
represented by,

31_3&: dp
This qQquantity is considered an invariant of the coordinate
system; the number of states within this differential phase
space never changes. In geometric optics, too, it is possible
to derive an invariant analogous to the phase space density
dxdydpdq.

Applied to a perfect geometric optical system (no losses

due to absorption) in equilibrium, the general approach is to
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write p,q in terms of the optical direction cosines L,M —
p=nL, g=nM. Therefore, the invariant defined by Liouville’s

Theorem 1is,

n? dx dy dL dM
Winston points out?® that this invariant can be interpreted as
a differential element of radiance, where radiance is defined
as the flux per unit solid angle per unit area projected
perpendicular to the ray direction.

For a concentrator, we are interested in examining the
radiance - the passage of this flux - from the entrance and
exit apertures, where the two apertures are chosen, for
convenience, to lie in the x-y plane. In the language of
Liouville, we can write the radiance as the phase space
acceptance (the difference between radiance and acceptance is

only a matter of direction) of an aperture,
‘r=ffffn=dxdydeM :

Now assuming that the aperture has cylindrical symmetry, we

can express the integral of the direction cosines as,

2z
fdedM= { sin(20)de

where 0 is the angle of incidence on the aperture as in Figure

2.1 - expected to range from 0 to =®/2.
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Rewriting dxdy = dA, we arrive at,

Foper = [[ n?sin(20) d0da

O %, wla

In order to apply this to an exit aperture connected to a
planar PMT, we introduce a factor E_.(0,r,,), the efficiency
that the PMT registers an event as a function of the incident
angle 0 and the position on the PMT. For an ideal PMT, E_,. is
considered constant over all angles and over the entire
surface of the PMT. Introducing E,. and integrating with n,
the refractive index of the PMT (usually glass), the phase

space acceptance of the exit aperture is,
X
) S f foz ny? Eg, (0, x,,,) sin(20) d0da,,, (1)

x
Vosr = [f 02 B dBg,] [-%cos(zﬂ)]:

= N 2EpeBAgye » (2)
This quantity is invariant under Liouville'’s Theorem, and
therefore to determine the concentration ratio of a light
collector (ideally A,./A.;.). we examine the phase space
acceptance (invariant) of the entrance aperture with the
intention of equating the two.

The approach for the entrance aperture is essentially the
same. The only difference is that we must include a factor
T(0,r.,.), the probability for transmission to the exit
aperture of a ray that intersects the entrance aperture at
To, With incident angle 6. For an ideal concentrator, all

34



rays with incident angle £ 0; are transmitted independent of
... while all rays with incident angle 2 0, are rejected.
Therefore the transmission-angle curve is flat with 100%
transmission out to 8, and an immediate drop to 0% at 0;
(Figure 2.2). The phase space acceptance of this aperture is

defined by the double integral,

= -8
SO ffoi N2 T(0,x,,)Ey:5in(20)d0 da,,, . (3)

with n, the refractive index of the medium within the
concentrator, and E,. defined as above. Evaluating the
integral for an ideal transmission-angle curve with cutoff at

0,, one finds

Pene = N2 Eppe A 8in%0;, . (4)
Noting that the phase space acceptance of the two apertures is

invariant, Y., = Y., we find:

Aent - npz . ( 5)
Acxit: n°2 Sinz Gi

As the ideal concentration ratio of a light collector is
defined as A,,./A.i., equation (5) is the maximum theoretical
concentrator ratio (C,;) for a 3D light concentrator. It is
also trivial to show that in 2D, where a ray can vary in one
dimension only (the invariant is ndydL), C,, = n,/(n, sin 6;).
The most important and difficult factor in designing a light
collector is to achieve one with the ideal transmission-angle
curve. In the next section, I detail the efforts pioneered by

Winston®* to design such a light collector.
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B. The Edge-Ray Principle

The key to designing an ideal light concentrator is to
devise one with an ideal transmission-angle curve for an
extreme angle 0;,. The following treatment is done initially
in 2-dimensions because it is easier and because the results
carry directly to 3D. Intuitively, one might first guess that
a conic collector - essentially the reverse of a megaphone -
would have ideal transmission. The conic collector is defined
by an extreme ray 0; off the axis of symmetry as shown in
Figure 2.3. The angle Yy is given by 2y = (=/2) - 6;, and the
length of the cone is defined by the intersection of an
extreme ray which originates at one edge of the exit aperture
with the opposite side of the cone. Although most rays
incident on the cone will be transmitted to the exit aperture.
after one reflection, Figure 2.3 illustrates that for rays ’
with incident equal to 6;, many will be turned out of the cone
after multiple reflections. One can also show that many rays
will be rejected with incident angle < 0,. Therefore, the
transmission-angle curve is not ideal for the conic collector;
it is not an ideal light concentrator.

The tremendous insight of Winston is the application of a
theorem he terms the Edge-Ray Principle. According to the
principle, in order to achieve ideal concentration it is
necessary that all extreme rays (those with angle 0,) be
reflected to the edge of the exit aperture after one

reflection. With this principle satisfied, all rays (in 2D)
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Rejected

Figure 2.3: The conic concentrator. The dotted line represents a ray
that has been rejected.

Pigure 2.4: Application of the edge ray principle with extreme angle
8,. Note that the ray with incident angle less than 0, passes through
the exit aperture.
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with incident angle less than 0; are transmitted somewhere in
the exit aperture (Figure 2.4). Furthermore, all rays (in 2D)
with angle greater than 8, will reflect several times and be
rejected. As such, an ideal transmission-angle curve is
achieved. Applying this principle in 2D, we immediately
derive the Winston Compound Parabolic Concentrator (CPC).
These cones were initially used as light collectors in
Cherenkov counters by Hinterberger and Winston?*. More
recently, they have been applied to solar energy collection
because of their nearly ideal performance.

Figure 2.5 demonstrates the construction of the CPC (in
2D) through the application of the Edge-Ray Principle. Given
a planar exit aperture and a source at infinite distance with
maximum input angle 0; (two conditions in contradiction with
the CTF Upgrade), we require that all parallel extreme rays
reflect off of the collector to point B’ on the edge of the
exit aperture. This principle coincides with the definition
éf a parabola that has a focal point at B’ and an axis of
symmetry defined parallel to the extreme rays. The curve
running from the entrance aperture to the exit aperture is a
‘slice’ of this parabola. One repeats the process along the
other side with B as the new focal point and for parallel
extreme rays with angle 0; off the other side of the symmetry
axis. This defines another parabola, the reflection of the
first through an axis of symmetry defined as the bisector of
the entrance and exit apertures. In 3D, this axis of symmetry
is the axis of revolution.

Similar to the conic collector, the length of the CPC is
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defined by the extreme ray which originates at the edge of the
exit aperture. It is a relatively simple matter (see Appendix
D in Win 1989) to show that L = a’(l+sin 0,)cos 0,/ sin? 0, with
a’ the exit aperture radius. From Figure 2.5, one sees
directly that the length of the cone can be described in terms
of the radii of the entrance and exit apertures by L = (a +
a’)Jcot 0;,. Equating these two expressions, we find a relation
for the radii of the two apertures, a,, = a’e;/Sin(0;).
Because we applied the Edge-Ray Principle, the CPC has an
ideal 2D transmission-angle curve. It accepts all rays with
incident angle £ 0; and rejects those with incident angle 2 0,.
Figure 2.6 is the 2D transmission-angle curve calculated by
Winston for the CPC, clearly ideal. Consequently, C,;, = a/a’ =
1/sin[0;], which is the maximum concentration ratio derived in
Section 2.A with n, = n,. Thus, the 2D CPC is an ideal light
collector.

A comparison in 3D further highlights the differences
between the conic and CPC cone. Figures 2.7 and 2.8 are the
transmission-angle curves for the conic and CPC cone
respectively. Compare the curve for a 0,,, = 10° conic
collector with the 0,,, = 10° curve for the CPC cone. Clearly,
the CPC cone is flatter much further out to 10° with a much
sharper drop after 10° than the conic collector. Therefore,
the total transmission is higher, and in terms of defining a
specific phase space (e.g. fiducial volume), the definition is
much sharper. Note that the 3D CPC does not have an ideal
transmission-angle curve (unlike the 2D CPC) because of skew
rays which undergo multiple reflections and bounce back out of
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semi-circle with radius 9.5cm, but an ~120° arc with radius llcm.
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the light collector. As Winston discusses?®, in extending the
CPC to 3D strictly by a rotation about an axis of symmetry, we
have no further degrees of freedom and therefore no way to
deal with these skew rays. This leads directly to the non-
ideal performance. Steps can be taken to optimize the 3D CPC
to skew rays, yet the effects are minimal.

In conclusion, I looked initially to the CPC cone as the
optimal concentrator for the CTF Upgrade because of the shape
of its transmission-angle curve. I took 0; = 17.3881° defined
by a ray from the edge of the exit aperture tangent to the
fiducial volume as in Figure 2.9. I expected that an array of
CPC’'s would accurately define a fiducial volume, recording all
events that occurred within and rejecting all events outside
by the observed pattern of lit and unlit PMT's. Upon further
analysis, however, it is apparent that the CPC is not ideal
for the CTF Upgrade and that a slightly different cone had to

be designed.

C. Non-Planar Photocathode

The Winston Compound Parabolic Concentrator is ideal in
2D for a planar exit aperture and nearly ideal in 3D. In the
CTF Upgrade, as well as in many other detectors, a curved PMT
window is used because it is very expensive to fabricate a
large, flat PMT. With a portion of the PMT protruding into
the light cone, the characteristics of the CPC transmission-
angle curve are affected. The PMT’'s proposed for the CTF
Upgrade are spherical with an 11 cm radius. Because of
fixturing needed to hold the PMT to the light cone, the
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maximum radius for the exit aperture is 9.5 cm.

Figure 2.10 shows the adjusted 2D transmission-angle
curve for the experimental design of the CTF Upgrade. The
figure was created with a 2D ray trace simulation - program
ta2cp.c from Appendix 2.C - that assumed an ideal PMT (i.e. it
would detect any photon that intersected its surface).
Although the CPC is designed with 8, = 17.39°, incident rays
out to 19° are detected with 100% transmission. Furthermore,
the curve has a broader cutoff about 0; and, therefore, is no
longer ideal. Clearly, the profile must be altered so that
the new exit aperture, defined by the outer surface of the
PMT, can be fully accounted for. This, in ﬁurn, alters the
maximum concentrator ratio.

If the entire phase space acceptance of the spherical
photocathode can be utilized, the concentration is C’ =
Ae/Ay. @and no longer A,./A,;. where A,  is the surface area of
the photocathode that projects into the light collector.
Therefore, the concentration is increased by a factor of
An/BAoie, Which is ~4/3 for the CTF’s photomultiplier tubes.
To achieve this concentrator ratio, it is necessary to apply
to the Edge-Ray Principle again, yet with the edge given by
the entire surface of the PMT. Moorhead, in his doctoral
thesis?’, has developed these cones extensively and called
them Compound Tangential Concentrators (CTC’s). The CTC’s
will be implemented in another proposed neutrino experiment,
the SNO Experiment. It turns out, however, that these cones,

as well, are not fully applicable to the CTF Upgrade.
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D. String Method Cones

The other aspect that I did not consider initially in
designing light collectors for the CTF Upgrade is the fact
that the fiducial volume is not an ’‘infinite’ distance from
the cones. Since the edge of the fiducial volume is expected
to be only =1lm from the light cones, there will be a +10°
spread of incident rays at the entrance aperture. Therefore
some rays will have incident angles as high as 27°, much
greater than 0, = 17° as defined by the CTF Upgrade design
(Figure 2.9). The rays with incident angle > 17° (assuming a
planar PMT; > 19° for the spherical PMT) will be rejected by
the CPC cone. Therefore, many events will occur within the
fiducial volume that would not be completely detected
(registered by all cones) by a spherical array of these CPC
cones. With the source at a finite distance, it is .
instructional to examine the transmission levels of the CPC
cone as one moves away from the center of the fiducial volume
(a transmission-radial curve). To calculate this curve, we
consider fiducial ‘shells‘’ with radii ranging from 0 to the
maximum fiducial radius.

Because the angular ‘spread’ increases with radius, in
considering shells of increasing fiducial radius, one expects
to observe fewer and fewer events as the maximum fiducial
radius is approached. Figure 2.11 is a 2D transmission-radial
curve for a 17.39° CPC cone designed for a maximum fiducial
volume of 89.55 cm as before. (The plot was generated using
the 2D ray trace program tr2d.c detailed in Appendix 2.B).
The 2D data demonstrates conclusively that this cone is not
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ideal for the CTF Upgrade design. In particular, the cone
does not have 100% transmission out to the edge of the defined
fiducial volume implying the possible loss of events that
occur within the fiducial volume. Therefore, the CPC design
fails for the CTF Upgrade and another profile was actively
pursued. [Note: a curved PMT is assumed in this simulation
which does affect the results as the CPC is designed for a
planar exit aperture. The effect, however, only improves the
CPC'’s radial performance and is not to blame for the non-ideal
transmission-radial curve.]

An ideal transmission-radial curve is highly desired for
the CTF Upgrade for several reasons. First, we want to be
able to detect with a high degree of confidence all events
which occur within the fiducial volume. Secondly, a sharp
transition at the edge of the fiducial volume allows for very
high resolution in differentiating between events outside the
fiducial volume from those within. This second point is
easily as important as the first for the CTF Upgrade because
it is directly related to the reduction of background levels.
As such, it is developed in great detail below.

The solution to account for both the near fiducial volume
and the spherical PMT is the construction of the ’‘String
Method’ (SM) Cone. Instead of assuming an infinite source, we
include the varying finite distance of the fiducial volume
within the design. The general method is similar to the
gartner’s method of drawing an ellipse. If the PMT and source
were planar, the treatment would be exactly as that developed
in Chapter 5.4 of Winston’s text?®. There, he applies the
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Edge-Ray Principle to a planar source located at a finite
distance from the light concentrator. He demonstrates that
the profile would be ’‘slices’ of two ellipses (Figure 2.12)
where the foci of these ellipses are defined by the edge of
the exit aperture and the edge of the source. [This ought to
sound very familiar to the description given on the CPC cones,
except replacing the parabolas by ellipses]. The curvature of
the PMT and fiducial volume, however, forces a slightly
different approach.

In essence, we look for an array of points that are the
set of intersections between rays tangent to the fiducial
volume and those tangent to the surface of the PMT. [As with
the CPC, the treatment is done first in 2D and then applied to
3D by rotating the 2D curve about its axis of symmetry.] With
much credit to Martin Moorhead (priv. comm.), I have written a
program which finds the profile of the SM cone given a set of
input criteria (program simult_dat of Appendix 1). The method
is fairly complicated and therefore I describe it in detail.

We take the first point on the profile to be the point of
intersection between the PMT and the exit aperture of the
light cone. The second point is located a variable distance -
denoted the ’‘step size’ - normal from the PMT surface. From
this new point, we draw a ray tangent to the PMT and the
fiducial volume. One then calculates the normal fi at this
point whereby the law of reflection would ‘connect’ the two
rays with one reflection (Figure 2.13). The next point is
taken a step size away from this one in the direction
perpendicular to the normal A.
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Fiducial Volume

Incident ray
tangent to the FV

Ray tangent
to the PMT

Pigure 2.13: 2D SM Cone: Demonstrating the edge-ray principle for a

non-planar PMT. n is the normal vector defined such that 6, = 0,.

50



Fiducial Volume

Edge of SM
Exit Aperture

Figure 2.14: 2D SM Cone: Depiction of the upper half of the SM cone
where the ray tangent to the fiducial volume is reflected to the edge of
the exit aperture as in a CPC cone.
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The routine continues in this manner until it is no
longer possible to draw a ray tangent to the PMT. At this
point, we utilize the ‘traditional’ Edge-Ray Principle with
the edge of the exit aperture as the ‘focal’ point (Figure
2.14). This second section is not a CPC, however, because we
still require that the incoming ray be tangent to the fiducial
volume, not originating at some infinite point with fixed
extreme incident angle 0;,. The profile continues until it
intersects with the ray originating on the edge of the exit
aperture that is tangent to the fiducial volume. Figure 2.15
is a 3D computer plot of an SM cone. Note how the curve bends
in slightly at the entrance end, a feature unlike the CPC cone
which may offer some fabrication difficulties.

With the program detailed above, I designed an SM cone
optimal for a 89.55cm Fiducial Volume. As appropriate for the
CTF, it has an exit aperture radius of 9.5 cm and the base of
the cone (where the PMT lies) was held at 240 cm from the
fiducial volume edge. The cone has a length of 117 cm and an
entrance aperture radius of 27.4 cm. Employing the same 2D
ray trace program used for the CPC cone, I calculated the
transmission-radial curve for the SM collector (Figure 2.16).
The curve is clearly ideal within program error and therefore
maximum light concentration is achieved. Unlike the ideal
transmission-angle curve, the ideal transmission-radial curve
does not drop to 0 beyond the maximum fiducial radius. This
is easily understood. Even for an infinite fiducial radius,
there are many rays that can be drawn to the SM cone such that
they would be detected giving an average transmission > 0%.
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3D Plot of the SM cone.

Figure 2.15:
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Pigure 2.16: Transmission-radial curve for the 2D SM cone designed
look at an 89.55 cm FV.
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The success of the SM cone (in 2D) is that it has a flat
acceptance out to the maximum fiducial radius where a steep
drop in transmission occurs.

I have also written a 3D Monte Carlo ray trace simulation
program (trnrad.c - described in Appendix 2.A) for the CPC and
String Method cones in order to investigate the effects of
skew rays on the transmission-radial curves. The results are
somewhat disturbing (see Figures 2.17 and 2.18). Although the
SM cone has a greater overall acceptance and a sharper cutoff,
the difference is not quite as dramatic as the 2D results.

The problem lies in the fact that the 3D SM cone no longer has
100% transmission out to the edge of the fiducial volume
(89.55cm) .

In order to better understand the significant drop in
transmission before the fiducial volume edge, I investigated
the polar angular dependence of the transmission for a fixed
fiducial radius (89.55cm). Figure 2.19 is a graph of the
percentage of photons which are transmitted to the PMT as a
function of the polar angle of a fiducial shell with fiducial
radius 89.55cm. The polar angle is 0° for rays originating at
the lower pole of the shell (the point on the shell closest to
the light collector) and 180° for rays originating at the top
pole. One observes a minimum in transmission around 65°. As
one expects, this corresponds to the portion of the fiducial
shell where the extreme rays (those with the greatest incident
angle) originate. The effect of skew rays is most significant
here. Such a low percentage in this region - relatively near
the equator - has a large effect on the average transmission
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because more events occur on average in the equatorial range
than near the poles. Thus, the explanation for a lower angle
transmission near the fiducial volume.

What this 3D transmission-radial curve implies is that we
expect poorer position resolution near fiducial edge than we
would have expected from the curve for the 2D case. It is at
this edge, moreover, that we need the greatest resolution in
order to differentiate ‘real’ events from those associated
with the surface impurities of the inner vessel. It ought to
be noted, however, that the drop-off before the fiducial edge
is not extreme and, in fact, may only minimally affect the 3D
resolution in this region. This issue is discussed further in
the following section.

Expecting a possible error in my simulation, I have
investigated several aspects of my code, including doubling
the accuracy of my SM cone and raising immensely the number of
events simulated, yet the effects were very minimal. The skew
rays associated with the ‘misses’ very nearly intersect with
the PMT, but instead are reflected out of the cone. Because I
used the exact same SM profile in my 3D simulation as in the
2D tests (which produced an ideal transmission-radial curve),
and as I have checked my code’'s performance in depth,
presently I have high confidence in these results. I do leave
open the possibility that there is some error in my analysis,
but I consider it quite unlikely. Regardless, the SM cones
outperform the CPC cones in terms of radial acceptance.
Moreover, I am very confident that any errors discovered in my
simulation would only improve the radial performance of the SM
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cones.

E. Further Application to the CTF Upgrade

Although the 3D SM cone is not ideal, it clearly
outperforms the CPC cone on the basis of its transmission-
radial curve. There are, however, several other factors which
must be considered with respect to the CTF Upgrade.

The most importént issue which demands attention is the
coverage that the light collectors will provide. 1In terms of
a single photon incident on the entrance aperture, the
coverage per total solid angle (Q = 4m) is expressed by,

dQ _ cos(¢)dl?
Q dn x?

where dl? is a finite element of area on the aperture, ¢ is
the angle between the normal of the area element and the
incident ray, and r is the vector drawn from the event to the
area element (Figure 2.20). If considering the coverage
defined by the light cone/PMT system, an additional factor
E,(0,r,x,y) must be introduced. Ep is 1 or 0 dependent on
whether the photon is transmitted (via reflections) to the
PMT, as a function of the parameters of the ray (0,r) and its
intersection with the entrance aperture (X,y).

As with our discussion of the transmission-radial curves,
it is most instructive to calculate the coverage E., as a

function of the fiducial radius g,

’

E.(xg) =&=_9.‘l.l 2 M%(ﬂ,r,x,y)
011

events sh 4xr?
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Fiducial Volume

Pigure 2.20: Geometry used in the Monte Carlo simulation to determine
the coverage of a given light cone - PMT array. (The coverage is
expressed in terms of photoelectrons/MeV).
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found by averaging a fiducial shell with radius r, and over
the entire aperture entrance. Neones 1S the number of cones
in the array and N,.... normalizes the sum.

Coverage can be expressed in terms of a more physical
factor, namely the number of photoelectrons (pe’s) per MeV of
incident neutrino energy recorded for a given PMT array.
Assuming 10,000 photons/Mev for our scintillator, the factor

works out to,
Pe/MeV(rg]l = (10000 photons/MeV) (.2) (.6) (abs) (ref) (Ec(rgl)

The .2 is the quantum efficiency of the PMT, .6 is the PMT
practical factor, abs is an absorption factor associated with
the solvent and shielding medium (e.g. water) and ref is a
reflection factor dependent on the reflection coefficient of
the light collector.

In order to calculate Pe/MeV(rg], I utilized the ray
tracing procedures from program trnrad.c to calculate E, and
added functions to calculate E.,, abs, and ref (see pemev.c
described in Appendix 2.D). Figures 2.21 and 2.22 are the
Pe/MeV vs. radius curves for 64 CPC and SM cones optimized for
a 89.5522 cm fiducial volume. The CPC cone detects many more
pe’s at the center of the fiducial volume, yet this number
drops off dramatically as the fiducial volume extends. The SM
cone, meanwhile, records much fewer pe’s at the center, yet as
one would expect from the transmission-radial curves, this
number does not drop off until near the edge of the fiducial
volume. The difference in the maximum recorded pe’s is solely

a function of the length of the two cones and the radius of

60



4 ™ T T T T T T T ' ]
dobooo
350 U”“”"Dnnnou .

- . ]
> i o J
S 300f a .
~ - a 1
@ [ o ]
o] 250:_ =] i
5 i ]
S I ° ]
2 - o J
g 200} ] i
's L
£ r @ 1
" 150f T ]

_ ) :

100F ]

r o h

r o

r 1 ’ Y i 1 l L L .

0 20 40 60 80

Radius (cm)

Figure 2.21: Photoelectron/MeV - Radial curve for a 3D CPC cone
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their respective entrance apertures as each can detect all
rays incident from these inner fiducial shells.

The number of pe’s detected from either array could be
increased by implementing more cone and PMT'’s, yet in order to
keep PMT and electronics cost at a minimum, we need to limit
the total number of PMT's used. One must examine, therefore,
if 220 Pe/MeV 1s a high enough value or if problems will arise
from the implementation of the SM cones. As mentioned in
Section 1.G, preliminary calculations suggest that an output
of 200 Pe/MeV is satisfactory and, therefore, the coverage of
64 SM cones ought to be sufficient. This fact, combined with
the near ideal radial acceptance of the SM cone, makes it the

Although it is important that the cones used for the CTF
Upgrade record enough pe’s all the way out the edge of the
fiducial volume, of greater importance is the characteristics
of this coverage at the edge fiducial volume. Specifically,
the light collector array chosen for the CTF Upgrade must have
accurate 3D resolution at the edge of the fiducial wvolume,
allowing one to differentiate between background events for
the inner vessel and actual events within the fiducial volume.
As suggested previously, this is exactly the advantage or
implementing the SM concentrator over the CPC (and other)
cones.

The sharp drop in Pe/MeV near the fiducial edge, if
utilized properly, will result in a very high resolution for
identifying background events associated with an inner vessel
at Im. As Figure 2.22 indicates, the number of p.e./MeV
likely to be detected with a 64 SM cone array at the inner
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vessel (1m) is approximately 1/2 the maximum value. What this
ought to allow, then, is the differentiation between an event
in the maximum region from one at the inner vessel solely from
the pattern of cones that are ‘lit’ (and unlit) and the
distribution of pe’s detected. Because the transmission has a
complicated dependence on polar angle and because the SM
cone’s 3D performance is not ideal, determining this pattern
with high confidence is far from trivial. The non-ideal
radial performance of the SM cone at the fiducial edge does
offer a problem, yet can possibly deal with this problem by
using the 89.55cm cone while defining the fiducial edge at the
point where the curve falls from maximum (~75 cm) .

Presently, I am composing a program which will simulate
for any N cones the CTF Upgrade enabling me to identify these
patterns of lit and unlit cones. I will be able to fix the
locations and paths of events both in and outside the fiducial
volume and thereby determine which cones are ‘lit’ (and unlit)
as one passes from the radial regime of maximum detection (~75
cm) to the inner vessel (~lm). It is hoped that an
identifiable pattern of lit and unlit cones will be revealed,
enabling one to differentiate with high confidence an event
that occurs at the surface of the inner vessel as an event
outside the fiducial volume (i.e. background). This would
allow a terrific reduction in background, and therefore a
higher probability of performing solar neutrino physics with
the CTF. Unfortunately, efforts underway on this project were
not completed at the time of this publication and therefore
will be detailed in a separate document. Because of the near
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ideal radial transmission of the SM cone, I fully expect to
succeed. In any case, the String Method concentrator is
cptimal for the CTF Upgrade and one must therefore pursue
fabrication techniques for building the cones under the

experiment’s strict environmental constraints.
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Chapter 3 - Fabrication

A. Materials

Because of the unique constraints of the CTF, there is a
very limited selection of materials for the fabrication of the
light collectors. 1In particular, the fact that the light
cones will be located very near the fiducial volume requires
that they be made of a radiopure material. Presently, acrylic
and a special nylon copolymer (Miles-Mobay Nylon 38F), are
considered the most likely fabricating materials. Table 3.1
shows the estimated levels of U, Th, and K for the two
materials as well as the rest of the CTF materials.
Calculations performed by Calaprice (priv. comm.) suggest that
light cones made of these two materials would have acceptable
background levels for the CTF Upgrade design. There has been,
however, some recent discussion concerning the levels of radon
found in nylon. Although no conclusions have been drawn, the
potential problem must be further considered before the final
fabrication of the light cones proceeds.

Another factor important to the choice of material is its
resistance to xylene, deionized water and mineral oil - the
shielding media most likely for the CTF Upgrade. Tests
performed by myself and others on nylon demonstrate its
resistance to all 3 mediums. Acrylic, however, is attacked by
xXylene at a dangerous rate. Within a xylene environment an
acrylic light cone would be destroyed well before the
completion of the CTF experiment. Furthermore, a leak in the

inner vessel could release solvent destroying the entire array
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Component U Th K (g/g)

Acrylic 1012 10712 10-¢
Nylon 2x10~1! 2x10-11 10-8
Water 10-13 10-13 10-10
Scintillator . 5x10-19 5x10~18 5x10~13
Steel tank 108 10-8

PMT’s and bases 4x10~8 2x10~7 1x10—4

Table 3.1: Estimated Radiocactive Impurities in the CTF Materials.
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of acrylic light cones regardless of what initial medium it
was in. On this basis, then, nylon outperforms acrylic.
Other pertinent factors are the cost, material strength,
availability, ease of fabrication and ease of coating the
material with a reflective surface. These topics will be
addressed specifically for nylon in the following sections.

I chose to use nylon as the fabricating material of the
light collector for a simple reason. As part of my overall
research for the Borexino project, I helped manufacture two
prototype inner vessels - nylon bags - for the CTF. The
technique we (Mr. Santorro, Mr. Loser, and myself) used
involved the chemical welding of thin, .010* thick, nylon
panels shaped like orange peels to create a spherical bag.
The welding agent, Nylaweld (3:1.}QO:Eth), dissolves nylon
allowing the affected area to flow together. It then
evaporates leaving behind pure nylon. Thus the bonds, if done
properly, are at least as strong and pure as the original
nylon. For the inner vessel, the joints were made by butting
edges of two panels and then welding nlen strips over the top
of the

Although the fabrication technique is fairly crude, it
turned out to be quite successful and relatively simple to
implement. In essence, I took the techniques we developed in
our efforts with the inner vessel and applied them to the
fabrication of light cones. The properties of nylon lent
themselves nicely to my efforts. Nylon is lightweight, very
resistant to pulling, easily shaped, and in our case,
abundant. In almost all aspects, it seemed the ideal
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substance to apply to the fabrication of these large light
collectors. Before proceeding with fabrication, however, I
wanted some assurance that the nylon would have the necessary

tensile strength to hold its shape against gravity.

B. Stress Test

As discussed in Section 3.C, two light cone prototypes
were designed and fabricated. This section details
theoretical analyses of the strengths and durability of the
two structures.

1. CPC Prototype

In order to evaluate the likely succesé of nylon, steps
were taken to determine if nylon would have enough stability
to keep its form within rather strict tolerances - less than
~5mm deflection at any point. This tolerance was agreed upon
after simulations by Lowry and Moorhead (priv. comm.)
suggested that a few millimeter deflection does not
significantly affect the characteristics of the light
collector. 1In addition, an engineering rule of thumb is that
a deflection of 1/200 the length is optimal. Preliminary
analyses by engineer Bob Parsells at PPL (priv. comm.) showed
that a CPC cone 135 cm long would buckle critically if
restrained at the exit aperture to point towards the horizon
(perpendicular to gravity). By introducing a support
structure of rings and bands, however, the stresses and
deflections associated with the cone were greatly reduced.
With this promising analysis, I decided to fabricate a
prototype light collector to examine fabrication techniques
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and experimentally test deflection levels. At that point, the
SM cones had not been fully investigated, and thus, the first
prototype was a 13° truncated CPC cone 46.61 cm long with a
3.17 cm radius exit aperture and a 13.36 radius entrance
aperture. These parameters were chosen with a particular
project in mind that has since been discontinued. A full
discussion of the CPC Prototype fabrication follows this
section.

2. SM Prototype

Once efforts progressed on the theoretical examination
(e.g. computer simulations) of the SM cone, I investigated the
stability of a truncated (lm) SM cone designed to look at a
fiducial volume of 89.5522 cm. I decided to truncate the SM
cone to 1m (from 117 cm) to ease fabrication and because
simulations show that the effects of partially truncating an
SM cone affect minimally the Pe./MeV - radial curve. [Compare
Figure 3.1, the Pe/Mev - radial curve for a the truncated SM
cone with Figure 2.22 for a full sized SM cone.] The fact
that truncation does not affect greatly the performance of the
SM cone may significantly reduce fabricating costs for the
design that is finally decided upon.

Using a finite element analysis program, IMAGES, I ran
static stress and deflection tests on the proposed design for
.020" thick nylon. I input known values for the material
properties of nylon (Young’s Modulus = 4.5x10° psi, Weight
Density = .0414 lbs/in®, Poisson’s Ratio = .45), fixed the
exit aperture against translational motion and applied a
gravity load perpendicular to the axis of symmetry. Without a
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Figure 3.2: Displacement contour plot of the truncated SM cone.
(Displacements are all given in inches).
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support structure, there were critical deflections in the cone
at the entrance aperture. By attaching a nylon ring (.25"
square cross-section) to the entrance aperture and 5
longitudinal bands evenly spaced on the outside of the cone,
the buckling is significantly reduced.

Figures 3.2 and 3.3 show a color plot of the deflection
and stress intensity contours for the supported SM cone. The
analysis indicates that the deflection would be within ’‘safe’
levels (.0225" = .57 cm) and the stress levels are far below
the 2000 psi critical stress point{(determined from pull tests
on nylon performed at PPL). Certainly, the finite element
analysis can only be taken as an estimate of the actual
success, yet the results for this design were quite promising.
Therefore, with a relatively successful CPC Prototype already
built, I decided to fabricate a SM Prototype to experimentally
test the feasibility of fabricating a full sized (1m)

collector with nylon.

C. The CPC Prototype - The Panel Technigue
The procedure for the fabrication of the CPC Prototype

(CPC-P), termed the Panel Technique, can be separated into
four steps:

Construct a male mold (external surface important)
Cut and assemble the panels

Coat either the panels or the fully assembled cone
Attach support structure

B W N

The four steps will be addressed separately so that all of the

pertinent options may be more fully discussed.
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1. The Mold

Unlike the fabrication of the nylon bag for the inner
vessel of the CTF, a full-sized mold is necessary to create a
light collector with nylon. With the sphere, as long as the
joints connecting panels are made accurately the internal
pressure will force a spherical shape. The light cone,
however, must be built to the exact shape because there is no
internal pressure. Several methods were investigated for the
manufacture of a male mold - a mold whose external surface is
the desired shape. For my purposes, the mold needed to hold
strict tolerances over time and also be heat resistant. One
option that was pursued involved spinning a mold out of
stainless steel. Another dealt with injection molding a
plastic form to the desired shape. On the whole the methods
were either too costly or time consuming. After weeks of
research one method, the construction of a wood mold, was
decided upon.

Wood is relatively lightweight, easily machineable,
rather resistant to heat, smooth when sanded, and repairable
with wood pulp if nicks or cracks develop. Before lathing a
wood mold, we needed a large solid block that could be
machined to the desired shape. Several large pieces from a
destroyed wooden table were glued together until a large
enough block was made. In order to lathe the block to the
desired shape, it was necessary to use a follower ~ a 1" thick
metal piece - that has the exact curve of the mold cut into
it. An aluminum piece was cut by a Computer Numeric Control
(CNC) Mill within approximately .0l1" tolerance of the designed
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CPC curve. The lathe follows the curve on the metal follower
and thereby cuts the block into a very accurate wood mold.
Figure 3.4 is a photograph of the completed wood mold for the
CPC-P next to its follower. This method was very successful
in creating an accurate mold as well as time and cost
efficient (constructed within 1 week).
2. The Panels

In order to make the panels, a thin metal ‘cutout’ must
be fabricated. Considering the cutout in only 2 dimensions,
the vertical axis corresponds to the arc length of the desired
curve, and the horizontal axis is 1/8 the circumference of the
curve at each point along this arc length. Therefore, a panel
made from the cutout ought to compose 1/8 of the light
collector when laid flat against the mold. A cutout was made
from aluminum and 8 panels were cut out of .02" thick nylon.
By using two-sided tape fastened vertically to the mold, two
panels are laid on the mold such that their edges are
abutting. In order to force the nylon panels to keep the
shape of the mold, heat is applied with a heat gun until the
panels are sufficiently soft and therefore moldable. The
application of heat is a necessary part of the Panel
Technique. As the panels are joined, they need to be heat
formed to the wood mold such that once removed from the mold
they possess the correct shape. 1Ideally, the panels ought to
be heated until they become flexible (~100°C) and then shaped
as they cool by applying appropriate pressure. For a large
scale project, an oven or array of heat lamps would be more
efficient than a heat gun to heat form the panels.
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Figure 3.4: Photograph of the wood mold for the CPC-P next to its
aluminum follower. A nylon panel can be seen attached to the mold.

Figure 3.5: Photograph of the uncoated CPC-P with support structure.
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Once the two panels ‘are flush against one another they
are bonded together. 1In the case of the CPC-P, Scotch
fiberglass tape was used. In the actual fabrication, strips
of .010" nylon would be glued to the panels using nylaweld as
with the nylon bag. i performed tests to ensure that the
nylon strip technique would be applicable to these panels and
the results were positive. Thus 8 uncoated panels were taped
together and an uncoated CPC-P was fabricated. (Figure 3.5 is

a photograph of the uncoated CPC-P with support structure).

3. Coating
The Panel Technique was also used to fabricate an

aluminum coated CPC-P. Nylon sheets were coated with a
reflective coating of aluminum by standard evaporation coating
techniques (discussed more thoroughly in Section 3.E). These
sheets were cut with the cutout and assembled with glass tape
as in the uncoated CPC-P. It is possible that other
Eechniques could be used to coat the light collector. The
other avenue that I specifically pursued was to coat all at
once a fully assembled uncoated light cone with the
evaporative coating technique. Unfortunately, this requires a
very large vacuum bell jar as well as an elaborate system of
evaporative boats to ensure an even coating. A vendor, EMF
Corporation, was found who offers this service, yet their
quote was too expensive ($550/piece). Figure 3.6 is two

photographs of the coated CPC-P with support structure.
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Figure 3.6: Two photographs of the coated CPC-P held at different

(Madel: Pat antorro)
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4. Support Structure

Two nylon rings and 4 nylon ribs were manufactured for
the CPC-P from 1/4 inch nylon plate (again nylon was chosen
because of its high radiopurity). The rings were cut with a
lathe to a precisely designed diameter. The ribs, meanwhile,
required more detailed attention because their inner surface
must match the curve of the CPC-P. They were cut with the CNC
Mill in much the same manner that the metal follower was
constructed for the mold. The ribs can be glued to the outer
edge of the nylon panels with nylaweld or possibly an epoxy
that would not be attacked in the shielding medium. For the
CPC-P the rings were made to fit into the ribs from the
outside and are not attached to the nylon panels. This was an
error in design. They need to be attached to the panels in
order to provide significant stability. This error is
observed in the amount of deflection that occurs in the nylon
at the entrance aperture end. Although the buckling is not

critical, it exceeds tolerant levels.

From the work done on the CPC-P, I was convinced that the
Panel Technique is a viable one, albeit labor intensive. It
became very clear that the panels used to fabricated the cone
need be very flat and cut very accurately. If not prepared
correctly, they will not fit together properly and there will
be ‘gaps’ in the cone. This effect is particularly prominent
near the exit aperture as observed with the coated CPC-P. I
expect that this was the result of a slightly inaccurate
cutout.
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The overall deflection levels on the two prototypes with
support structure were quite low, however, even granted the
fact that the structure was not designed ideally. Therefore,
with optimistic confidence, I looked to fabricate an SM
Prototype (SM-P) 1lm in length, with a maximum diameter of
60.344 cm. Although the procedure was essentially the same, a

few points will be addressed on the main differences.

D. String Method Prototype (SM-P)

1. Mold

Nearly 3 times the size of the CPC-P, a mold made for the
SM-P out of a solid block of wood would be both expensive and
extremely unwieldy to lathe. At first, an entirely
alternative approach was investigated which remains a very
respectable method. 1In brief, one would lathe a large
styrofoam block using a metal follower to produce a mold
slightly smaller than the desired cone. Then, the styrofoam
is covered with fiberglass strips until a fiberglass form
larger than the designed cone is built. This fiberglass form
can then be machined (sanded) to the exact shape. It would be
sturdy, heat resistant, inexpensive, smooth, and easily
repaired. Unfortunately, there are several problems with this
method. First, it requires the acquisition of a large block
of machineable styrofoam. An estimate from Delaware Valley
Pack and Seal places the price at $665 for the amount of
styrofoam that would be needed. Secondly, more machine time
would be needed (expense and time) and, finally, the glass
dust particles released in machining of fiberglass are very
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Figure 3.7: Two photographs of the wood form being built. Note
hollow area within the form.
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dangerous. With these drawbacks in mind, an alternative
approach involving wood was decided upon.

First, a removable, 4 sided pyramid of plywood was
assembled to the approximate dimensions of the mold. 4 Large
pieces of pine were attached to this pyramid to provide a
support structure. By gluing a large number of small pieces
of pine to these 4 larger pieces (and each other), a wood form
was built up that approximated the mold. Figure 3.7 is two
photographs of the wood form in various stages of assembly.
This procedure was time, wood and labor efficient. 1In
addition, the lighter, hollowed-out form is more easily
handled both in terms of machining and cone fabrication. This
wood from was lathed to the SM shape using a metal follower as
with the CPC-P (Figure 3.8). The program used to create the
follower with CNC Mill is sm_fllwer.c described in Appendix 3.
The procedure used for the SM cone can easily be applied to a
cone of almost any size where the dimensions of the lathe are
the only real limiting factors.

2. Panels

The panels were cut and assembled in the same manner as
for the CPC-P. Because of the larger panel size, the effects
of wrinkles in the panels were even more apparent than with
the CPC-P fabrication. At the time of publication, I have
just begun tests with the SM mold (Figure 3.9). The first
uncoated SM-P fabricated was far from ideal. Extreme
wrinkling in the initial panels (solely a function of the
rolling method used to store the nylon sheet) led to large
gaps in the cone at the exit aperture end. Also, it was
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Figure 3.8: Photograph of the wooden form on the lathe. The metal
follower can be seen in the foreground of the photograph, lying parallel
to the wood mcld.

1 Q- Phat sty sl P T " .
Figure 3.5: rPhotograph of the completed wood mold with nylen panels.
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apparent that the heat gun could not generate enough heat over
a large are to sufficiently heat mold the panels. In the next
few weeks, I hope to find a flatter supply of nylon sheet and
create a second SM-P, possibly exploring other techniques to
heat mold the panels.

Two other significant points are worth noting. First,
for the ‘true’ fabrication of the light cones it may be
necessary to do away with the two-sided tape because it could
attack the reflective coating on the panels. As such, the
wood mold for the SM-P was designed to be .5* longer on top
and bottom than the designed light cone. One could clamp the
panels to the mold by a thin aluminum strip and two c-clamps,
one fastened at each end. There was not time to study this
method, but it certainly appears a viable option. Second,
recall that the end of the SM cone is curved inward a little.
If one bonded all panels together on the mold, it would be
impossible to remove the cone. Therefore, one makes the final
joint on the metal follower which can then be removed through
the entrance aperture.

3. Coating

The SM-P was fabricated uncoated because the vacuum bell
jar located in 125 Jadwin Hall is not large enough to hold the
panels for evaporative coating. Furthermore, the expense of
having a vendor coat just enough panels to build the SM-P was
too great. To get a general feel for the success of
reflection properties of the SM-P, one could spraypaint it
with a chrome paint that would be partially reflective.

4. Support Structure
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The support structure for the SM-P will be very similar
to that for the CPC-P except that the two rings will be
attached to the nylon panels. This ought to match the design
analyzed with the finite element program described in Section
3.B., If it is found to not provide enough support, extra
rings will be added. 1In addition, I plan to investigate the
use of stainless steel rings near the exit aperture where they
would be far enough from the fiducial volume to create
background problems. These rings would provide much greater
stability than the nylon rings and are just as simple to

manufacture.

E. Coatings

It is central to the fabrication of a light collector to
insure that its reflective surface transmits the highest
percentage of light possible for the working wavelengths of
the experiment. For Borexino'’s scintillator, the light
épectrum is in the visible region ranging approximately from
350 nm to 500 nm. Therefore, my investigation focused on
reflectors ideal for the visible region. The other
significant factor associated with the reflective material
used is its resistance to the shielding media proposed for the
CTF Upgrade: deionized water, mineral oil and solvent
(xylene). Because of their very high reflectivity and
availability, I most actively pursued aluminum and silver.
Table 3.2 summarizes the theoretical and experimental results
of tests that I performed on a variety of reflective coatings
that involved aluminum and silver. The following is a
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discussion of the tests and a further discussion of the
results in Table 3.2.
Table 3.2: Summarization of the Coating Tests. A Y indicates a

successful coating, a P a possible solution, and an N that the
coating was vigorously attacked.

Material Reflection?® Mineral Xylene Deionized
0il Water
Al Only > 90% P (~3 days at | ¥ (3 months at | N (< 1 day at
90 °C) room temp.) room T)
Al w/ sio > 90% Y (~4 weeks Y ( " ) N (< 1 day at
at 90° Q) 90° C)
Ag w/ a 100A > 90% P (~12 days Y( = ) N (< 2 days
Cr underlayer at 90° C) at 90° C)
Ag w/ sio > 90% Y (over 12 Y ( * ) N (< 2 days
(no Cr) dys at 90° Q) at 90° C)
Au 2 40% - Y« * ) -

Many hours were spent preparing coated nylon samples via
standard evaporative coating procedures. The evaporation
process occurs in a large vacuum bell jar pumped down to
~1x10°® mm Hg. The high vacuum is needed to ensure a smooth
and pure coating. Materials are evaporated in the bell jar
isotopically, thereby depositing a layer on any substrate
placed in the jar. With this technique I evaporated aluminum,
chrome, and silver (both alone and in combination) in layers
of various thickness. all samples were evaporated on one side
only, which allows one to make bonds on the outer side of the
panels. It was determined through trials that a total
thickness of approximately 1500A would ensure that the coating
is opaque and therefore optimal for reflection. I also
observed that the initial surface quality of the nylon samples
had direct effect on the final coated surface quality. 1In

particular, scratches and fingerprints initially on the nylon
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samples left large areas of unpolished surface. The effects
of this surface ‘contamination’ on the overall reflectivity
were not measured, yet for precaution extreme care ought to be
taken in handling the nylon sheet. Now, I will report on the
specific tests performed for samples in each medium.
1. Solvent

A variety of small (3" x 3* x .020") samples of coated
nylon have been kept in a beaker of xylene for over 3 months
at room temperature. In all of the cases, the solvent has
appeared to do no damage to the reflective surface and
therefore aluminum appears the ideal coating in this medium
strictly because of availability and costs. It is expected
that light cones placed in a xylene environment would last the
full length of the CTF experiment.

2. Deionized Water

It is well known that deionized water vigorously attacks
aluminum. This was directly observed in the tests that I
performed. At room temperature, the 1500A layer dissolved on
the order of one day. Furthermore, a nylon sample prepared by
EMF Corporation that had a ~1000A Al layer protected by ~1300A
of Si0 was similarly attacked. Although the Si0O layer does
offer some protection, nylon is know to be very permeable to
water and, therefore, water diffusing from the uncoated side
is likely to be dissolving the aluminum. 1In any case, it
became very clear that Al would not be a solution in deionized
water.

Therefore, I concentrated my efforts on silver. Before
testing the samples, it was determined that a 100A coating of
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Cr adheres the silver to the nylon samples more effectively
than straight silver on nylon. As the chrome had no effect on
the external silver surface, this two layer technique was used
for nearly all of the test samples. Knowing before hand that
silver would not be attacked as quickly as the aluminum, steps
were taken to simulate the time scale of the CTF Upgrade. 1
heated beakers containing the deionized water and the coated
nylon samples to accelerate the chemical processes between the
two substances. For a rough estimate, one may follow a
chemistry rule of thumb which states that the corrosion rate
is accelerated by a factor of 2 for every 10°C the
environment’s temperature is increased. In terms of the CTF
Upgrade, 3 days at 90°C would approximate a year of operation
in the CTF. Therefore, beakers were placed on a large hot
plate that was adjusted until the water temperature was very
close to 90°C.

The results were very discouraging. Although the silver
is not attacked as quickly as aluminum, it is clear that it
will not survive in deionized water. First the reflective
surface becomes a bit hazy and then eventually the coating
begins to flake off the nylon sample. I also tested a silver
sample coated with a 1200A sio layer by EMF in the hopes that
the Si0O would protect the silver from the deionized water.

The lifetime of the nylon sample was improved, but again the
surface was eventually destroyed. It is most likely that
water permeating through the uncoated side is swelling the
nylon and in this manner ruining the polished surface. 1In
conclusion, after weeks of evaporations and tests presently I
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have developed no procedure to make a nylon sample with a
reflective coating that can withstand deionized water. This
is a serious problem, particularly because deionized water is
the most likely shielding medium to be utilized in the CTF.
It is not just a problem associated with the procedure I have
developed to fabricate nylon light cones, but pertinent to any
method that involving metallic reflective coatings. Further
research and effort must be made to address this important
problem.
3. Mineral 0il

The same procedures describe for deionized water (i.e.
raised temperatures to accelerate the corrosion) were applied
to mineral oil. It was observed that samples coated with
aluminum only were ruined after ~7 days, but the aluminum
sample with an SiO overcoat lasted weeks (30 days) at 90°C.
Unprotected silver lasted about 14 days, while the sample with
an Si0O overcoat shows a promising resistance to corrosion
(perfect after 12 days now). 1In all cases (with the possible
exception of the Ag-SiO sample), the samples were eventually
corroded which raises some alarm, yet it occurred over a time
scale that far exceeds the proposed CTF lifetime Again, it is
likely that after several weeks, the mineral oil had permeated
the nylon enough to cause it to swell thereby ruining the

reflective coating.

F. Costs and Time
Not only must the fabrication technique produce light
collectors within strict tolerances that will last for over a
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year, the technique must be assembled cost and time effective.
As with most products, the costs can be divided between
materials and labor. In terms of material costs, the Miles-
Mobay Nylon 38F is an expensive copolymer which must be
extruded on a custom basis. Using the cost of our first
extrusion as a basis, I estimate that the .020" nylon cost for
100 cones (~2500 sg. ft) to be $2.00/sqg. ft or $50/cone. The
nylon plate needed for the support structure ought to be a
comparable price provided the nylon plate is bought from stock
in large quantity ($25/cone). The wood mold is very expensive
(>$1000 with labor), yet it is a one-time expenditure and
therefore not too influential on the overall cost. Other one-
time costs such as heat lamps or nylaweld would be marginal
significant and are therefore ignored.

The biggest unknown cost of fabrication is the price to
coat a cone. If a standard evaporative coating method can be
done in-house, the costs are strictly labor. If a vendor is
fequired, however, the costs could be very high (several
hundred dollars per cone). The actual cost will be strictly
dependent on the type of coating, the final design of the cone
(size), and the actual technique employed. These variables
all remain very significant questions in the fabrication of
the light cones.

The labor costs, as well, can only be roughly assessed.
From my experience with the fabrication of the prototypes, I
estimate it would take an experienced worker 1 man day to cut
and assemble one light cone. I do not believe that skilled
labor is necessary, greatly reducing the labor costs.
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Therefore, the labor cost of the assembly of one light cone
would range from $50 - $100 provided that unskilled labor is
sufficient. There are also some machine shop costs involved
with producing the support structure, yet they ought to be
minimal because many bands and rings can be cut
simultaneously.

In terms of production time, the building of a wood mold
and the extrusion of the nylon sheet would take about 3 weeks.
At that point, the time of fabrication is solely a function of
the coating process used and the number of workers assigned to
the project. Even if only one wood mold is used, in one 8
hour shift, it is possible that 2 cones could be built. For
100 cones, this would relate to 10 working weeks. Given
another mold, or more shifts, this time scale could be greatly

reduced.
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Chapter 4 - Conclusions

The optimal light collector for the CTF Upgrade design
has been demonstrated to be the String Method Cone. Not only
does it have nearly 100% transmission out to the edge of the
fiducial volume, the steep drop in its transmission at this
edge ought to allow for accurate 3 dimensional position
resolution. The SM cone, however, is not ideal and it is
possible that some modifications will be necessary to further
optimize its performance. In particular, I expect that one
would define the edge of the fiducial volume to be the point
where the 3D transmission-radial curve falls from maximum and
not where it supposed to drop ideally.

Although the SM cone is ideal for the CTF Upgrade, the
final profile remains to be determined. Many factors need to
be addressed first (e.g. number of PMT's, fiducial volume
size, actual shielding length for the PMT bases) before the
exact parameters for the SM Cone will be determined. The
programs presented in this thesis will offer the capability to
both create and analyze SM cones for any CTF Upgrade
configurations.

In addition, it still remains to be demonstrated that an
array of SM cones will produce identifiable patterns of ‘hits’
near the edge of fiducial volume. Such patterns would allow
one to differentiate between events originating at the inner
vessel from those actually within the fiducial volume. I

expect to create a program which will simulate an spherically
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isotropic array of ‘N’ SM cones in order to investigate these
patterns. The results of this research will be published in a
separate document.

In terms of fabrication, the Panel Technique offers mixed
results. The success observed with the CPC-P demonstrates
that the method is easily applicable to a collector of its
size. For the full sized SM-P, however, concerns remain over
the ease with which the panels can be molded to the shape of
the wood mold. The fact that an accurate wood mold has been
fabricated, however, will allow for further investigations
into the technique.

The issue of reflective coatings also remains unresolved.
For a xylene or mineral oil environment, a one sided aluminum
coating (perhaps protected by Si0O) is a very attractive
solution. Arrangements, however, would need to be made with a
vendor (e.g. EMF Corporation) for the evaporative coating of
large nylon sheets for the SM cone panels unless a very large
bell could be procured. With respect to a deionized
environment, there is no solution at this stage for coating
nylon. I believe the focus should center on preventing the
water from permeating the open side of the nylon panels. If
this can be achieved, I expect that panels coated with silver
would last the duration of the CTF Upgrade.

It also remains to be demonstrated that a fabricated cone
actually has the correct optical properties. I don’t believe
that this is a difficult point, but it will involve the design
of an experiment (perhaps a setup involving a He laser) that
can test the transmission properties of the collector.

93



In summation, it is clear that the SM cone is optimal for
the CTF Upgrade design. Intensive research needs, however, to
be focused on the fabrication of these large cones. It is my
opinion that the Panel Technique is a viable option, but large
advancements must be made in the upcoming weeks to prove its
success. The research performed for this thesis was directed
specifically to the CTF Upgrade design. It would be a simple
task, however, to generalize its results to many types of
radiation collection detectors. The programs presented are
easily understood and therefore altered to correspond to other
designs. The fabrication methods outlined may also be
applicable to other projects, particularly ones with strict
radiopurity constraints. The String Method cones, derived
from principles pioneered by Winston, are powerful tools which
once properly understood can alter the entire outlook of an
experiment. With respect to the two designs for the CTF, they
may allow one (the CTF Upgrade) to perform serious solar
neutrino physics; perhaps even first verification of the day-

night effect as predicted by the MSW Theory.
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Appendix

This appendix gives a more detailed description of the individual programs that I wrote to
investigate the performance of light collectors for the CTF Upgrade. In order to minimize the size of this
Appendix, I take full use of the fact that many programs share the same procedures. These procedures are
detailed once, and then assumed to be common knowledge in the programs that follow. All code was
written in standard ANSI C language. Finally, a working understanding of the CTF Upgrade design is
assumed throughout the Appendix.

1. SM Profile - simult_dat.c [Located in /home/prochska/thesis/c/ctfcpc]

The following program calculates the x,y coordinates (in cm) of the String Method cone for a given
fiducial volume and shielding length. The (Rrogram takes the fiducial volume and calculates the effective
fiducial volume due to refraction between the solvent (n = 1.5) and the water (n = 1.34) outside the inner
vessel. It assumes that the exit aperture - aprim - has a radius of 9.5cm and that the PMT is spherical with
a‘nln l_ltc,;n radius. Figures A.1 and A.2 will be very useful in understanding the following description.

ariables:
reff - Effective fiducial volume (f.v.) = (input fiducial volume) * n_scin/n_water
r2 - Distance from the center of the f.v. to the exit aperture
dcone - Distance from the center of the f.v. to the x,y point on the concentrator profile
y2 - Distance from the center of the f.v. to the center of the photocathode
cathang - Angle off the vertical axis to the point of intersection between the exit aperture and the
photocathode
cathrad - Radius of the photocathode = 11cm
thetastop - Limiting angle which indicates the end of the profile. Defined by the ray originating at x[1],y[1]
which is tangential to the f.v.
x[1],y[1] - First horizontal, vertical point on the concentrator profile where the exit aperture and PMT meet
x[i],yli] - Point on the concentrator profile
xlast, ylast - Variables used to hold the last output x,y point
step - The distance between output x,y points
dl - Step size for the individual s:i&s in the loop. The smaller the value of dl, the more accurate the profile
d1 - Distance from the photocathode center to the point on the profile
(See Figure A.1 for thetal, theta2, phil, phi2, totang and tang)
(See Figure A.2 for sumang)
nmx - Horizontal component of the normal vector
nmy - Vertical component of the normal vector
covg - Coverage of a single SM cone determined as a function of the size of the cone

Description: The program generates dllvel_lproﬁle in the following manner. It takes x[1],y[1] as its first point
and steps a distance dl normal to the PMT. This is the second point on the profile. The program then
*draws’ two rays: one tangent to the PMT and one tangent to the FV. It calculates the anf}:fe subtended by
these two rays, and if we consider a normal vector bisecting this angle, the pro calculates the angle off
the vertical axis (tang) of the vector perpendicular to this normal. Therefore, if an incoming ray from the
FV_were to strike a infitessimal mirror at this x,y point on the concentrator that is parallel to the vector
defined by tang, the ray would reflect off the mirror tangent to the PMT. The gogram calculates the next

int on the concentrator profile by moving a step size gdl) in the direction of the vector defined by tang.

e procedure than repeats, with two new rays drawn tangent to the FV and the PMT, and therefore a new
angle tani defining a new ’mirror’.

t some point on the concentrator profile, however, it becomes impossible to draw a ray tangent to
the PMT [it occurs when phil + thetal > (r/2 - cathang)]. If that is the case, the pro draws a ray to
the intersection of the exit aperture and the PMT (the reflection of x[l],?"g] through axis of symmetry).
The calculates sumang and queries whether the end of the concentrator been reached (is sumang >
thetastop?). If it has not, it finds the new angle tang as described above and then calculates the new x,y
point on the concentrator.

ny vaging the size of step and dl, one varies the distance between output points and the accuracy
of the profile (the smaller dl is, the smaller the steps between x,y points and therefore the greater the
accuracy of the profile).
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/* This is the program simult_dat.c used to define the profile of the SM
cone in terms of 1,z points. It is located in /home/prochska/thesis/c/ctfcpc
A more detailed discussion of the program can be found in Appendix A.1 of
the 1993 Physics Senior Thesis by Jason X. Prochaska */

#include <stdio.h>

fdsine apia 8.5 /* Radivs of th o
ine aprim 9. ius of the exit aperture

#define P1 3.141592654

#define deg (Pi/180.0)

#define NR_END 1

#define n_scin 1.5 /* Indices of reflection */

#define n_water 1.34

void main ()

double rfv, reff, r2, dcone, dl, thetal, theta2, phil, phi2, totang,
tang, x[100000], y{100000], diff, thetastop, sumang, cathang, cathrad,
covg, step, xlast, ylast, nmx, nmy, y2, dl, dpmt;

int i, j, cones, flag;

/* Determine inital values of the detector configuration */
printf("\n Input the radius of the Fiducial Volume (in cm): ");
scanf("%If", &rfv);
/* reff is the effective fiducial volume with refraction taken into
account */
reff = rfv * n_scin / n_water;
printf("\n The Effective Fiducial Volume is %.7f cm \n", reff);
printf("\n How many cones are to be used? *);
scanf("%1d", &cones);
printf("\n What is the shielding length? (in cm) ");
scanf("%lf", &dpmt);
12 = reff + dpmt;

/* Set initial geometrg of the simulation */
cathrad = 11.0;

cathang = asin(aprim/cathrad);

printf("\n cathang = %.21f", cathang/deg);
y2=12 + cos(cathanf)*cat.hrad;

dcone = sqrt(x[1]*x[1] + (y[1] -,)'2)*({[1] - y2))
thetastop = asin(reff/dcone) + asin(x{1}/dcone);

y[1] = cathrad * cos(cathang);
x[1] = cathrad * sin(cathang);
xlast = -100;
ylast = -100;

flag = 1;
/* Set the step lengths for the routine */
step = .015;
1 iy 8% o o
oop of the pro
tior i=1; i <= 100000; i++)

d1 = sqrt(x[i]*x[i] + y[il*y[il); )
dcone = sqri(x[i]*x(i] + (y[i] - y2)*(yli] - y2));

thetal = asin(cathrad/d1);
theta2 = asin(reff/dcone);
phil = asin(x{i)/d1);
phi2 = asin(x[i}/dcone);

/* This conditional determines if the ray can intersect tangentiall
with the PMT. If so, it does the SM tangential construction. If not,
it uses the ed§e-xa principle to construct a CPC-like section */

if (phil + thetal > (90*deg - cathang))

/* SM tangential construction */
totang = (Pi - thetal - theta2 - phil - phi2) * .50;
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) tang = totang + phil + thetal - Pi/2;
else
/* CPC-like construction via edge-ray ﬁrinci le */

sumang = atan((x[i] + x[11)/(y[1} - y[1D);
if (sumang < thetastop)

/* Breaks if the end of the cone has been reached */
flag = 0;
break;

)
totang = (Pi - sumang - theta2 - phi2) * .50;
tang = totang + sumang - Pi/2;

}
/* Outputs value of point if the step size from the last output point is large enough */
tp if ((x[i] - xlast)*(x[i] - xlast) + (yli] - ylast) *
( (yli] - ylast) > (step * step))

nmx = -cos(tang);
nmy = sin(tanj);
covg = (cones/2) * (1.0 - cos(phi2)) * 100;
printf("n%.8f %.8f %.8(", x([il,
yli] - y[1], nmy/nmx);
xlast = x[!];
ylast = y[i];

}
/* Calculates the next point on the cone by travelling perpendicular to the
normal calculated a_lbovle (defined by tang) */

j=1+1

x[j] = x[i] + sin(tang)*dl;

yl] = yli] + cos(tang)*dl;

If (flag)
% printf("\n We never reached the end.");

else
nmx = -cos(tang);
nmy = sin(tang);
covg = 32.0 * (1.0 - cos(phi2)) * 100;
printf("n%.8f %.8f %.8f", x[i], y[i] - t&l], nmy/nmx);
} printf("n We have reached the end of the profile. \n");
}
2. Ray Tracing

Because the 3D simulations are more complex, I decided to give a detailed account of one of them
which applies to the rest of the ray tracing routines. Consider trnrad.c the Rosetta Stone of all of the ray
tracing routines that I have developed.

A. tmrad.c - located in /home/prochska/thesis/c/simult/3D

tmrad.c calculates the 3D transmission-radial curve for both CPC and SM cones. It is a Monte
Carlo ray trace program that follows the gath of individual rays, determining whether or not they strike the
PMT. In short, the program considers a 3D fiducial shell in space with vanable radius fv_r. A very large
number of rays are drawn from the shell to the entrance aperture of the cone. Because of the cylindrical
symmetry of the cones and the sphere a simplification is made. The program uses variable z,x on the shell
while holding y at 0 always. It then weights the rays of from the shell as a function of the polar angle theta.
Therefore, rays originating from near the equator of the shell have more weight than those originating from
the poles. This is a logical Monte Carlo simulation as more events will occur within a finite volume taken
around the equator than a finite volume around the poles [directly a function of sin(theta)]. One is asked to
input a number of variables related to the cone and to the 'depth’ of the simulation. In general, the
parameters ideal for the CTF Upgrade are assumed, including a simple factor for the refraction of the rays as
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they pass from solvent to water. A brief description of the most important variables follows. There are also
some detailed comments throughout the code.

(The following variables are best understood by examining the geometry of Figure A.3)

Entrance Aperture Parameters:

aper_area - An array of area elements which make up the aperture entrance. Their size varies with aper_rad.
aper_rad - An array of aperture entrance radius values ranging from ap_max to (ap_max)(.75)/stps_apr.
ap_max - Maximum size of the entrance aperture

stps_apr - Number of radial steps the aperture radius is divided into

stps_ang - Number of angular steps that the entrance aperture is divided into

Light Collector Parameters:

th_max - Extreme incident angle for the CPC cone

r_fc% ichn array of r values for the CPC cone defined by th_max. Each r value corresponds to an increment
of . inz

r_sm, z_sm - An array of r,z values that describe the SM cone profile. These values are input by the user (I
used the values determined by simult_dat.c)

rtio_sm - Array of 1}.,/:1, values defining the normal at each point on the SM profile

nln_sm - Number of lines of input data for the SM cone

hts - Counter used to keep track of the number of photons which reach the PMT
stps_spz - Number of vertical steps that the fiducial shell is divided into
stps_spr - Number of radial steps that the effective fiducial radius is divided into

Variables in Main

L_cone - Length of the light collector

d_apsP - Distance from the center of the sphere to the entrance aperture

fv_eft - Effective fiducial radius with refraction taken into account. This is the radius that the light
collectors ought to be designed to look at

fv_r - The radius of a given fiducial shell

N_ev - Number of photon events examined weighted by the Monte Carlo sin(theta) factor

refs - Maximum number of reflections that a ray will undergo before being considered a miss

The comments found within the code are quite extensive and therefore only a brief synopsis of the
program is given here. Essentially, the program draws a ray from a fiducial shell (radius fv_r) a point on
the entrance aperture with the origin of the simulation taken to be the center of the exit aperture of the light
cone. The entrance aperture is simulated by a mesh of finite area elements, each with a known position
(Figure A.3). The program determines the direction of the ray, and than through a series of steps calculates
whether the path of the ray as it reflects of the light collector eventually hitting the PMT or reflecting out
the light cone. Keeping track of the number of ’hits’ it than calculates the gercenta e of rays which were
transmitted from the fiducial shell o the PMT, and therefore for a given radius shell, we have a 3D
transmission-radial curve for the CTF Upgrade.
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Figure A.3: Description of some of the variables used in trnrad.c
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/* This is trnrad.c located in /home/prochska/thesis/c/simult/3D

This program calculates the 3D transmission-radial curve for both the

CPC and SM cones. A more detailed write-up of the program can be found in
” Appendix 2.A of the 1993 Senior Physics Thesis by Jason X. Prochaska

#include <stdio.h>

T 1 g s i cm
ine aprim 9. xit aperture radius in cm

#define Pxpgl.‘i41592654 pert

#define deg (Pi/180)

#define END 1

#define n_scin 1.5 /* Indices of refraction */

#define n_water 1.34

#define refl_cof 90

#define z_pmt -scirt(121 - 9.5%9.5) /* Z coordinate of the PMT */

#define pmt_rad 11.0

/* Global Variables */

double *i‘l‘ _area, *aper_rad, ap_max, th_max, *r_sm, *z_sm, *rtio_sm, *r_cp,
ts,

lon% stps_apr, stps_spz, stps_spr, stps_ang, nln_sm;

int length;

/* Global Function Declarations */

void cp_array(double L_cone);

int pmt(double vt_x, double vt_y, double vt_z, double x_ap, double y_ap, double

z_ap);
double inter_cp(double x_cp, double y_cp, double z_cp, double vt_x,

double vt_y, double vt_z);
double inter_sm(double x_st, double y_st, double z_st, double vx, double vy,

double vz, int *ind_sm);
void non;la ledm)xble *vt_x, double *vt_y, double *vt_z, double x, double y,
uble z);

void norm_sm(int ind_sm, double x, double y, double *vx, double *vy, double *vz);
double *dvector(long nl, longonh);
void nrerror(char error_text[40]);

/* Main program */
void main ()

double L_cone, d_apsp, fv_eff, fv_r, N_ev, sum_Ec, *Ec, z, gamma;
int i, k, flag, npmt, refs;
/* Function Declarations */
void inpt(double *L_ip, double *d_ip, double *fv_ip, int *fl_ip, int *npm_ip,
int *refs);
void init();
void calc_Ec(int k, double fv_r, double L_cone, int fi_cn, double d_apsp,
double *N_ev, int refs);
/* Setting Initial Data */
inpt(&L._cone, &d_apsp, &fv_eff, &flag, &npmt, &refs);
aper-area 33‘\’reetor(l 1)
aper_area = » Stps_apr - 1);
rad = dvector(1, stps_agr - 1);
= dvector(l, stps_spr + 20);
pt._sg dvector(1, stps_spr + 20);
mit(),
printf("\nmade it through init\n");
* MainkLoo& of Program */

do {
k++;
/* Define fiducial volume radius */
fv_r = fv_eff*k/(stps_spr);
/* Calculate the number of hits and the total number of
cailn dgcél(]{,r?ys ‘i{ flag, d &N fs)
c_ v_r, L_cone, , d_apsp, &N_ev, refs);
/* Output */ P
printf("\n");
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printf("fv radius = %.41f, percent = %.2lf", fv_r,
hts[k]*100 / N_ev);
} while(k < stps_spr + 9);

)

void inpt(doubltq. )"L_ip, double *d_ip, double *fv_ip, int *f1_ip, int *np_ip,
int *refs
/* Routine used to define many of the intial values */

double fv_rad, shield, th, fv_ff, L._cn, r, z, ratio;

int J

printf("\nHow many steps do you want to consider in the aperture entrance? " );
scanf("%I1d", &stps_apr);

printf("\nHow many vertical steps do you want to consider in the sphere? ");
scanf("%l1d", &stps_spz);

printf("\nWhat is the Fiducial Volume without refraction? (in cm) ");
scanf("%lf", &fv_rad),

fv_ff = fv_rad*n_scin/n_water;

*fv_‘? = fv_ff;

printf("nHow many radial steps do you want to consider in the sphere? ");
scanf("%l1d", &stps_spr);

printf("\nWhat is the shielding length? (in cm) ");
scanf("%lf", &shield);

printf("\nWhat is the length of the light collector? (in cm) ");
scanf("%If", &1._cn);

*L_ip=L_cn;

*d_ip = shield + fv_ff - L_cn;

printf("\nWhat is the entrance aperture radius? (in cm) ");
scanf("%lf", &ap_max);

printf("nHow many cones are there? ");

scanf("%d", np_ip);

printf("\nHow many reflections do you want to consider? ");
scanf("%d", refs);

printf("\nls the cone an SM or CPC? (SM=1,CPC=0) ");
scanf("%d", &flag);

if (flag)

{
,/"; This inputs the profile of the SM cone including the normal vector

printf("How many lines of data are there? ");
scanf("%1d", &nin_sm);

r_sm = dvector(1, nln_sm);

z_sm = dvector(1, nln_sm);

rtio_sm = dvector(l, nln_sm);

for( = 1; j <= nin_sm; j++)

scanf("%If %lf %If", &r, &z, &ratio);
r_smfj] =r;

z_sm|j] = z;

rtio_sm(j} = ratio;

}
*fl ip=0;

printf("\nWhat is theta max? (in degrees) ");
scanf("%1f", &th);
th_max = th*deg;
cp_armray(L_cn);
*lip=1,
} }
void _C&Isaﬂay(double L_cone)
/* This routine creates the CPC array as a function of the length of the
light collector and extreme angle th_max. The values are calculated from
equation 4.6 of Winston’s text™ */
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double cs, sn, a, b, ¢, z, ¢s2, sn2, cssn, b0, cl, ¢0, radic;
int i;
cs = cos(th_max);
sn = sin(th_max);
cs2 = cs*cs;
sn2 = sn*sn;
cssn = cs*sn;
2*agnm*(l+sn)*(l+sn),
1 = (-2)*aprim*cs*(2+sn);
c0 = (- l)*apnm*apnm*(l+sn)*(3+sn)
length = ceil(L_cone*5
r_cp = dvector(], length),

for (i=1; i <= length; i++)

z =i*.02;

a = cs2;

b = 2*z*cssn + b0;

c = sn2*z*z + cl*z + c0;
radic = b*b - 4*a*c;

if (radic < 0) nrerror("Ima §
r_cpli] = (-b + sqrt(radic))/(2*a);

}
printf("\n i = %u", i);

root in cp_array");

void init()

/* This procedure initializes the values of the aperture entrance mesh.
Note that the first and last value of aper_rad and aper_area need special
consideration so that the mesh remains within ap_max without double
counting anything */

int ij;

aper_rad{1] = (ap_max)*(.75)/(s
aper_rad[stps_apr - 1] = ap_max tgs alp;S)/(stps apr));
/* aper_area is a finite elment of area in the aperture entrance defined
by Z*Px*r*dr */
aper_area[l] = Pl*((l.5)*ap_max/(stps_apr))*((1.5)*ap_maxl(stps_apr))/
stps_ang;
aper_atea[qutps a’:r = Pi*(ap_max*ap_max*(1-(1 - 1.5/stps_apr)*
- 1.5/stps_ apr)))/stps ang;
{or (i= 1 < (stps_apr - 1); i++)

radfi) = i*ap_max/(stps_apr,
:g:rr arez[1[11] = %lg“lzap (tsx?a)x/stps apr)*(i*ap_max/stps_apr)
) Istps_ang;
}

void calc_Ec(int k, double fv_r, double L_cone, int fl_cn, double d_apsp,
double *N_ev, int refs)
/* This Frooedure calculates the number of rays that hit the PMT as a function
of the fiducial shell radius. */

double x_sp, y_sp, z_sp, x_ap, y_ap, z_ap, theta, alph csphi, d_hyp,
tp, Vi_x, vi_y, vt_z, x_in, y_in, z_in, sum_Ec, Er, Ec, vo_x, vo_y,
vo_z, ab_cof;

inti,j, I, m, ﬂag, ind_sm, flag2;

his[k] =
for (i=1; 1 < stps_spz; i++)

/* x_sp, y_sp, z_sp define a point on a fiducial volume shell. Theta is

the azimuthal angle, a strict function of z_sp. Because of cylindrical
symmetry in the fiducial shell and the light collector, y_sp = ( always. */
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z_sp = ((fv_r)*i*(2. O)/(stps spz) - fv_r) + d_apsp + L_cone;
theta = Scos(fabs(z ._sp - d_apsp - L_cone)/fv_r);

y_sp =

x_sp = (fv_r)*sin(theta);

for ( = 1; j < stps_apr; j++)

for (1= 0; I < stps_ang; ++)

{
/* N_ev keeps track of the number of events in the simulation. The
sin(theta) - a Monte Carlo weithing factor - is related
to the c6hndr1cal symmetric approximation I made in defining
y_sp always. */
*N_ev += sin(theta);
alph = 2*1*Pi/stps_ang;

/* x_ap, y_ap, z_ap define a point on the entrance aperture.
vt_x, vi_y, vt_z define the vector of the ray as it travels
throughout the simulation. */

x_ap = aper_rad(j]*cos(alph);
y_ap = aper_rad[j]*sin(alph);
z_ap = L_cone;
vi_X = Xx_ap - X_sp;
vt_y y_ap;
vt.z=2_ap-Z_sp;

/* Checks to see if the ray goes directly to the PMT */

ﬂag pmt(vt X, Vi_y, vt_z, X_ap, y_ap, z_ap);

1f (ﬂag) flag2 = 1;
else

{
/* As the ray did not hit the PMT, we look for the intersection
of the ray with the light cone and to calculate the ray
that reflects from the surface */
x_in = x_ap;
y-in = y_ap;
z_in = z_ap;
if (fl_cn)
{ do

{
/* This procedure is used for the CPC cones */
m++;
/* tp is a parameter which describes a new ray via the
equation r_new = r_old + tp*vr */
tp = inter_cp(x_in, y_in, z_in,
Vi_X, VLY, vt_2);
/* Calculate the new point of ongm of the ray */
x_in = x_in + tp*vt_x;
y_in = y_in + tp*vt_y;
z_in = z_in + tp*vt_z;
/* Find the new vector describing the ray’s motion *
norm_cp(&vt_x, &vt_y, &vt_z, x_in, y_in, z_in);
/* Determine if this new ray hits the */
flag = pmt(vt X, vt_y, vt_z, x_in, y_in,

1{f(ﬂag N7 e .0001)

flag2 = 1;
} break;
/* If the ray travels upward, it will always esc
Therefore, end the routine. Also break if we ve reflected
our maximum number of times (refs) without intersection */
if (vt_z > 0 l m == refs)

{
flag2 = 0;
break;

} } wh%le (m < 1000);
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else
{ do

{
/* Procedure for the SM cone exactly the same as
that for the CPC cone */

m++;

tp = inter_sm(x_in, y_in, z_in, vt_x,
vt_y, vt_z, &ind_sm);

x_in = x_in + tp*vt_x;

y_in = y_in + tp*vt_y;

z_in = z_in + tp*vt_z;

norm_sm(ind_sm, x_in, y_in, &vt_x,

&vt_y, &vt_z);
flag = pmt(vt_x, vi_y, vt_z, x_in, y_in,

z_1m);
if (flag Il z_in < .008)

flag2 = 1;
break;

}
if (vi_z > 0 Il m == refs)

flag2 = 0;
break;

| } wl}lile (m < 1000);

i}f (flag2)

* Increase the number of hits by 1 weighted
by our Monte Carlo factor */
}hts[k] += 1*sin(theta);

) return;

int pmt(doubl)e vt_x, double vt_y, double vt_z, double x_pt, double y_pt, double
z_pt
/* This routine determines whether a ray hits the PMT directly */

double a, b, ¢, z1, 22, radic;
it 5
* abc areﬂatie parameter of the quadratic roots for the equation z(ray) - z(pmt) = 0 */
a=vi_X*Vt_X + vi_y*vi_y + vi_z*Vt_z;
b = 2¥(x_pt*vt_x + y_pt*vt_y + (z_pt - z_pmt)*vt_z);
C = X_pt*x_pt + y_pt*y_pt + (z_pt - z_pmt)*(z_pt - z_pmt)
- pmt_rad*pmt_rad;

radic = b*b - 4*a*c;
if (radic < 0) flag = 0;
else

zl = (g-b + sqrt(radic))/(2*a))*vt_z + z_pt;
z2 = ((-b - sqrt(radic))/(2*a))*vt_z + z_pt;
/* If an intersection occurs above the base of the light collector
(z=0) we have a hit! */
f@zl>0lz2>0)flag=1;
else flag = 0;

\ 3emm flag;

double inter_cp(double x_cp, double y_cp, double z_cp, double vt_x, double vt_y,
double vt_z)
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/* This finds the intersection of a ray with the CPC cone using the CPC array
described above. The routine calculates the radial difference (total x,y)
between the ray and cone. If this distance is small enough, it stores the
value and calculates the difference for the next point. If this absolute
difference is smaller than the previous one, the program continues. If not
it returns the parameter t_last of the previous point */

int i, flag;
double rl, 12, t, tlast, x, y, z, diff, dlast, MIN, pass, dum;

dlast = 2*aprim;
lf\ldIN =l(.0 *ap_max/stps_apr;

/*agﬁe Emrch begins at the bottom of the CPC cone */
1Eor(i=0; i< : i++)

if (i -*= }gngth) nrerror ("Never found intersection in inter_cp");
z=1% Uz -
t=(z - z_cp)ivt_z;
X = X_Cp + Vi_Xx*t;

y =y_cp+ vty*;
rl = sgrt(x*x + y*y);
12 = r_cp[i];

diff = rl - r2;

/* flag keeps track of whether we have come within MIN of the light
collector yet */
if (flag)

i{f (fabs(diff) < MIN)
dlast = diff;
tlast = t;
flag = 0;
continue;
else continue;
if (fabs(diff) > fabs(dlast)) { break;}
?lse
dlast = diff;

tlast = t;
continue;

return(tlast);

double inter_sm(double x_st, double y_st, double z_st, double vx, double vy,
double vz, int *ind_sm)
{ /* Essentially the same routine as described for inter_cp */

double rl, 12, diff, ¢, x, y, z, dlast, tast, MIN;
int i, flag;
Eﬁf l(; 05)*ap_max/

= (. ap_) Stps_apr;
for(i=1;i<= nln_smtg-sl; i++)

if (i == nin_sm + 1) nrerror("never intersected in inter_sm");

z = z_sm[i];

t=(z - z_st)ivz;

X = X_st + vx:t;

y = y_st + vy*t;

1l = sqri(x*x + y*y);
diff = r_smfi] - rl;
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if (flag)
i{f (fabs(diff) < MIN)

dlast = diff;
tlast = t;
flag = 0;
continue;

else continue;

i}f (fabs(diff) > fabs(dlast)) { break;}
else

{
dlast = diff;
tast =¢;
continue;

)

/* ind_sm defined the point of intersection so that the normal can be found
in norm_sm */
*ind_sm =1i- 1;
return(tlast);

void norxg_cgfedogble *vt_x, double *vt_y, double *vt_z, double x, double y,
ouble z
/* This procedure calculates the normal vector of the CPC cone and via the
law of reflection determines the new direction vector of the ray */

double Fx, Fy, Fz, r, n_norm, rdotn, cs, sn, cs2, sn2, dum;

cs = cos(th_max);
sn = sin(th_max);
cs2 = cs¥*cs;
sn2 = sn*sn;
r = sqri(x*x + y*y);

/* Components of the unnormalized normal vector */
Fx = -(2*x*cs2 + 2*x*z*cs*sn/r + 2*aprim*(1+sn)*(1+sn)*x/ir);
Fy = -(2*y*cs2 + 2*y*z¥*cs*sn/r + 2*aprim*(1+sn)*(1+sn)*y/r);
Fz = -(2*z*sn2 + 2*r*cs*sn - 2*aprim¥*cs*(2+sn));

/* Magnitude of the normal vector */
n_norm = sgrt(Fx*Fx + Fy*Fy + Fz*Fz);
rdotn = (*vt_x*Fx + *vt_y*Fy + *vt_z*Fz)/n_norm;

/* Components of the new ray found via the law of reflection */
*vt_x = *vt_x - 2*rdom*Fx/n_norm;
*yi_y = *vt_y - 2*rdotn*Fy/n_norm;

} *vt_z = *vt_z - 2*rdom*Fz/n_norm;

void norm_sm(int ind_sm, double x, double y, double *vx, double *vy, double *vz)
/* This procedure calculates the normal vector of the CPC cone and via the
{ law of reflection determines the new direction vector of the ray */
double nx, ny, nz, or, n_norm, rdotn, beta, ratio;

/* The normal vector is input in terms of r,z */
ratio = rtio_sm[ind_sm];
beta =l 3m12(y.X);

nr = nz/ratio;
/* nor is decomposed into nx, ny from the x,y position on the profile */
nx = nr*cos(beta);
ny = nr*sin(beta);
/* Magnitude of the normal vector */
p_nom = sqri(nx*nx + ny*ny + nz*nz);
rdotn = (*vx*nx + *vy*ny + *vz*nz)/n_norm;
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/* Components of the new ray found via the law of reflection */
*vx = *vx - 2*rdotn*nx/n_norm;
*vy = *vy - 2*rdon*ny/n_norm;
*yz = *vz - 2*rdotn*nz/n_norm;

)

double *dvector(long nl, long nh)
/* Defines an array */

double *v;

v = (double *) malloc((size_t)((rh - nl + 1 +
NR_END)*sizeof(double)));

if (!v) nrerror("allocation funcetion in dmatrix()");

return v - nl + NR_END;

void nrerror(char error_text[40])
/* Numerical Recipes standard error handler */

{
printf("Break in code error...\n");
printf("%s \n",error_text);
printf("...now exiting to system...\n");
exit(1);

B. t2dc - located in /home/prochska/thesis/c/simult/2D

This pro, is the 2D counterpart of trnrad.c. It calculates the 2D transmission-radial curve for
both the CPC and SM cones. Instead of a fiducial shell, there is a fiducial circle from which all rays are
drawn to a 2D enmc;gpemne. The PMT is no longer spherical, but a 120° arc of an 11cm radius circle.
Any other significant differences between this program and trnrad.c are noted in the code itself.

/* This is program tr2d.c located in prochska/thesis/c/simult/2D.
‘I‘{mlculadt:&ﬂ tl:::l 2D tmnsmissi;m—radial curve forbtzo%h th:’.l Cngand dsglzcgnes.
more iled description of this program can ound in Appendix 2.
of the 1993 Senior Physics thesis by Jason X. Prochaska. This &m‘ﬁram is
very similar to trnrad.c located in prochska/thesis/c/simult/3D. Within
*lthat program are many comments pertinent to this program.

#include <stdio.h>
#include <math.h>

#define aprim 9.5

#define Pi 3.141592654

#define deg (Pi/180)

#define 1

#define n_scin 1.5

#define n_water 1.34

#define refl_cof .90

#define z_pmt -sqrt(121 - 9.5%9.5)

/* Global Variables */

double *aper_rad, ap_max, *r_sm, *z_sm, *rtio_sm, th_max, *r_cp;
long stps_apr, stps_spz, stps_spr, nln_sm;

int length;

/* Global Function Declarations */

void cp_array(double L_cone);

int gmt(double vr, double vz, double r_pt, double z_pt);

double inter_cp(double r_ct, double z_cp, double vr, double vz);
double inter_sm(double r_st, double z_st, double vr, double vz, int *ind_sm);
void norm_cp(double *vi_r, double *vt_z, double r, double z);

void norm_sm(int ind_sm, double r, double *vr, double *vz);
double *dvector(long nl, long nh);

void nrerror(char error_text{40]);

/* Main Program */

void main ()
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double L_cone, fv_eff, d_apsp, fv_r, *Er;
int refs, flag, k;
/* Function Declarations */
void inpt(double *fv_ip, double *L_ip, double *d_ip, int *refs, int *fl_ip);
void init();
double calc_Er(i)m k, double fv_r, double L_cone, int fl_cn, double d_apsp,
int refs);

/* Setting Initial Data */
npt(&fv_eff, &L _cone, &d_apsp, &refs, &flag);
ger_rad = dvector(1, stps_ag - 1)
Er = dvector(l, stps_spr + 25);

ini

t0;
printf("\n Made it through init \n");
/* This f th& Main Loop of the program */

do {
k++;
/* fv_r is the fiducal circle radius */
fv_r = k*fv_eff/(stps_spr);
/* Er[k] represents the percentage of rays that hit the PMT after as
many as (refs) reflections */
Erlk] = calc_Er(k, fv_r, L_cone, flag, d_apsp, refs);
/* Output */

printf("\nfv rad = %.4lf Percentage = %.21f", fv_r, Er[k]*100);

} while(k < stps_spr + 9);

void inpt(double *fv_ip, double *L_ip, double *d_ip, int *refs, int *f1_ip)
/{* Input procedure *

giougle fv_rad, shield, th, fv_ff, L_cn, r, 2, ratio;

int flagj;

printf("\nHow many steps are in the aperture entrance? " );
scanf("%Id", &stps_apr);

printf("\nHow many vertical steps in the circle? ");
scanf("%!1d", &stps_sg_z);

printf("nWhat is the Fiducial Volume? (in cm) ");
scanf("%If", &fv_rad);

fv_ff = fv_rad*n_scin/o_water;

*fv_ip = fv_ff;

printf("\nHow many radial steps in the circle? ");
scanf("%ld", &stps_spr);

printf("\nWhat is the shielding length? (in cm) ");
scanf("%If", &shield);

printf("\nWhat is the length of the cone? (in cm) ");
scanf("%If", &L _cn);

*L_ip = L_cn;

*d_ip = shield + fv_ff - L_cn;

printf("nWhat is the aperture radius? (in cm) ");

scanf(" %", &ap_max);

printf("nHow many reflections do you want to consider? ");
scanf("%d", refs);

printf("nls the cone an SM or CPC? (SM=1,CPC=0) ");
scanf("%d", &flag);

i{f(ﬂas)

printf("How many lines of data are there? ");
scanf("%Id", &nln_sm);

r_sm = dvector(1, nln_sm);

z_sm = dvector(1, nln_sm);

rtio_sm = dvector(1, nln_sm);

for(j = 1; j <= nin_sm; j++)

scanf("%If %If %", &r, &z, &ratio);

r_smijl =1,
z_sm|j] = z;
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rtio_sm[j] = ratio;

| *flip=0;
?lse
printf("nWhat is theta max? (in degrees) ");
scanf("%If", &th);
th_max = th*deg;
cp_array(L_cn);
*lip=1;
}
}
void init()
int i;

aper_rad[1] = (ap_max)*(.75)/(stps_apr);
aper_rlstps_apr - 1) = sp T-LT5)(stps_apoy;
for (i=2;1< (stps_apr - 1); i++)

| aper_rad[i] = i*ap_max/(stps_apr);
}

double mlc_E;(i)nt k, double fv_r, double L_cone, int fl_cn, double d_apsp,
int refs .
{/* This procedure calculates the transmission for a given fiducial radius */

double r_sp, z_sp, r_ap, z_ap, theta, phi, d_hyp, tp, vi_r, vt_z, r_in,
z_in, N_ev, sum_Er;
int i, j, 1, m, flag, ind_sm, flag2, coeff_rad;

sum_Er = 0;
N_ev=0;

for (i=1; i < stps_spz; i++)

* z_sp and r_sp are points on the fiducial circle, theta is the
polar angle defined by z_sp. r_ap and z_ap define a point on the
aperutre entrance. vt_z anr vt_r are the vertical and horizontal
components of the incident ray. */
Z_sp= ((fv_r)*i*(2.0)/(ystps_spz) - fv_r) + d_apsp + L_cone;
theta = acos(fabs(z_sp - d_apsp - L_cone)/fv_r);
r_sp = (fv_r)*sin(theta);

for (j = 1; j < stps_apr; j++)
1E0r0=-1;1<2;l+=2)

coeff_rad = (-1)*];
r_ap = coeff_rad*aper_rad[j];
z_ap = L_cone;
vt_r =r_ap - r_sp;
vt_z =2z_ap - z_sp;

/* Does the ray hitt( the PMT directly?? *)/

= pmi(vt_r, vt_z, r_ap, z_ap);

i‘}agﬂagﬁaﬁ =1

/* If not, find where it goes... */
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{
/* This is the same routine found in trnrad.c */
m++;
tp = inter_cp(r_in, z_in, vt_r, vt_z);
r_in = r_in + tp*vi_r;
Z_in = z_in + p*vt_z;
norm _cp(&vt_r, &vt_z, r_in, z_in);

t(vtrvtzrm _in);
i{f fﬂag
flag2 = 1;
break;

}
/* If the ray travels upward, it will always escape. */
if (vt_z > 0 ll m == refs)

2 0;
( sqrt((r) _Sp - 1_ap)*(r_ )sp r_ap) +
Z_! s z Z_§

Bhl z{,cos(((azp sp - zpap)/dall,lyp)),

} } whzle (m < 1000);

else
{ do
{
m++;
tp = inter_sm(r_in, z_in, vt_r, vt_z,
&ind_sm);

r_in = r_in + tp*vL_r;

z_in =z_in + tp*vt_z;

norm_sm(ind_sm, r_in, &vt r, &vt_z);
pmy(vt_r, vt_z, r_in, Z_in);

Kafﬂag liz_in < 008)

flag2 =1;
break;

}

if (vt_z > 0 f m == refs)
flag2 = 0;
break

} wl}xile (m < 1000);

fAd sum_E)r keeps track of the number of rays which hit the PMT,
while N_ev is the total number of rays. Each is weighted
by Monte Carlo factor [sin(theta)] which underscores the fact
that more events will occur along the equator of the fiducial
circle than at the poles */

i{f (flag2)

sum_Er += sin(theta);
N_ev += sin(theta);

}
else N_ev += sin(theta);

}
}

}
return sum_Er/N_ev;

_tht(double vr, double vz, double r_pt, double
is procedure determines if the ray hits the P wnthout reflection */
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double a, b, ¢, z1, z2, radic;
int flag;

a = vr*vr + vz*vz;
b = 2%(r_pt*vr + (z_pt - z_pmt)*vz),
¢ = r_pt*r_pt+ (z_pt - z_pmt)*(z_pt - z_pmt) - 121;

radic = b*b - 4*a*c;
if (radic < 0) flag = 0;

else
z1 = ((-b + sqrt(radic))/(2*a))*vz + z_pt;
z2 = ((-b - sqrt(radic))/(2*a))*vz + z_pt;
if(zl>00122>0)flag=1;

| else flag = 0;

return flag;

}

double inter_cp(double r_ct, double z_cg), double vr, double vz)
o

/* This routine finds the intersection of the ray with a CPC cone */

int i, flag;
double rl, 12, t, tlast, z, diff, dlast, MIN, pass, dum;

dlast = 2*aprim;
MIN =l(.0 *ap_max/stps_apr;

I* 'Iie search for intersection starts at the bottom of the CPC cone */
t{‘or(i:O; i < 40000; i++)

if (i == g:lngth) nrerror ("Never found intersection in inter_cp");

z=i%

t = (z - z_cp)ivz;

rl = fabs(r_ct + vr*t);
12 = r_cpli];

diff = rl - 12;

i{f (flag)

i{f (fabs(diff) < MIN)
dlast = diff;
tast=t;
flag = 0;
continue;

}

else continue;

zf(fabs(dift) > fabs(dlast)) { break;}
else

dlast = diff;
tlast = t;
continue;

return(tlast);
double inter_sm(double r_st, double z_st, double vr, double vz, int *ind_sm)
/* This procedure calculates the intersection of a ray with an SM cone ¥/
double rl, 12, diff, t, z, dlast, tlast, MIN;
int i, flag;

= 1;
% = (.05)*ap_max/stps_apr;
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fori=1;i<=nln_sm + 1; i++)

if (i == nln_sm + 1) nrerror("never intersected in inter_sm");
z = z_sm[i];

t = (z - z_st)/vz;

r]l = fabs(r_st + vr*t);

12 = r_sm{i];

diff =12 -rl;

i{f (flag)

i{f (fabs(diff) < MIN)

dlast = diff;,
tlast = t;
flag = 0;
continue;

}

}else continue;
ifls(fabs(diff) > fabs(dlast)) { break;}
else

{
dlast = diff;
tlast = t;
continue;

*ind_sm=i-1;
return(tlast);

void norm_cp(double *vt_r, double *vt_z, double r, double z)
/* This routine calculates the new ray that results in a reflection of the
{CPC cone */

double Fr, Fz, n_nomn, rdotn, cs, sn, ¢s2, sn2, flag;

¢s = ¢os(th_max);
sn = sin(th_max);
cs2 = cs*cs;

sn2 = sn*sn;

if (r<0)

r=r*-1);
} ’
else ﬂaf =0;
Fr = -(2*r*cs2 + 2*z*cs*sn + 2*aprim*(1+sn)*(1+sn));
Fz = -(2*z*sn2 + 2*r*cs*sn - 2*aprim*cs*(2+sn));
if (flag) Fr = Fr*(-1);
n_nom = sqrt(Fr*Fr + Fz*Fz);
rdotn = (*vt_r*Fr + *vt_z*Fz)/n_norm;
*vt_r = *vt_r - 2*rdon*Fr/n_norm;
| *vt_z = *vt_z - 2*rdotn*Fz/n_norm;
void norm_sm(int ind_sm, double r, double *vr, double *vz)
/* This routine calculates the new ray that results in a reflection of the
( CPC cone */
double nr, nz, n_norm, rdotn, ratio;
ratio = rtio_sm(ind_sm];
nr ; nz/r'alio;
if (r < 0) nr = nr*(-1);

n_norm = sqre(nr*nr + nz*nz);
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rdotn = (*vr*nr + *vz*nz)/n_norm;
*vr = *vr - 2*rdotn*nr/n_norm;
*vyz = *vz - 2*rdotn*nz/n_norm;

}

double *dvector(long nl, long nh)
/* This procedure creates an array of variable dimensions */

double *v;
= (double *) malloc((size_t)((nh - nl + 1 +
NR_END)*sizeof(double)));
if ('v) nrerror("allocation function in dmatrix()");
} return v - nl + NR_END;

void nrerror(char error_text[40])
/* Numerical Recipes standard error handler */

{
printf("Break in code error...\n");
printf("%s \n",error_text);
printf("...now exiting to system...\n");
} exit(1);

C. ta2cp.c - located in /home/prochska/thesis/c/simult/2D

This program calculates the 2D transmission-angle curve for a CPC cone. On the whole, it is very
similar to trnrad.c and tmrd.c as it utilizes most of the same procedures. The only difference is that the
incident rays do not originate from a fiducial volume, but are assumed to originate at some infinite source
with a variable incident angle. The user chooses what range of angles to examine, and therefore what
portion of the transmission-angle curve to calculate. Any other differences between this program and trnrd.c
are noted within the code.

/* This is program tacpc.c located in /home/prochska/thesis/c/simult/2D.
It calculates the 2D transmission-angle curve for a CPC with a sgherical
PMT (as appropriate for the CTF). See Appendix 2.C of the 1993 Senior Physics
Thesis by Jason X. Prochaska for more detail */

#include <stdio.h>
#include <math.h>

#define aprim 9.5

e o ek
e

#define Nl{.END 1

#define n_scin 1.5

#define n_water 1.34

#define refl_cof .90
#define z_pmt -sqrt(121 - 9.5*9.5)

/* Global Variables */
double *aper_rad, ap_max, th_max, *r_cp, *hit, *theta, step_size;

long stps_apr, stps_the;

int length;

/* Global Functions */

/* Note that all of these functions are described in more detail in trnrad.c
located in /home/prochska/thesis/c/simuit/3D */

void cp_array(double L_cone);

int gmt(double vr, double vz, double r_pt, double z_pt);

double inter_cp(double r_ct, double z_cp, double vr, double vz);

void norm_cp(double *vt_r, double *vt_z, double r, double z);

double *dvector(long nl, longonh);
void nrerror(char error_text[40]);

/* Main Program */

void main

double L_cone;
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int refs, flag, k;
/* Function Declarations */
void inpt(double *L_ip, int *refs);
void init();
void calc_hit(double L_cone, int refs);

/* Setting Initial Data */
inpt(&L._cone, &refs);
aper rad dvector(1, stps_apr - 1);
initQ)
;mntf("\n Made it through init \n");
This procedure calculates the percentrage of rays which hit the PMT

calc _hit(L_cone, refs);
/* Output */
for (k = 1; k < stps_the; k++)

printf("\ntheta = %.8If perecent = %.2If ", thetalk)/deg,
hxt[k]*lOO),

} I}’fintf("\n“);

\(roid inpt(double *L_ip, int *refs)
double th, L_cn;

printf("nHow many steps are in the aperture entrance? ");
scanf("%Id", &stps_apr);
printf("\nWhat is the length of the cone? (in cm) ");
scanf("%If", &L_cn);
*L :? =L_cn;
("nmWhat is the aperture radius? (in cm) ");
scanf("%lf" &ap_max);
printf("nHow many reflections do you want to consider? ");
scanf("%d" refs);
cf("\nWhat is theta max? (in degrees) ");
("%lt" th);
= th*deg;
cP_array(L_cn s
These two input parameters set the range of angles examined around the extreme angle */
pnntt‘("\n]-[ow many steps off of theta_max do you want? ");
scanf("%1d", &stps_the);
theta = dvector(1,stps_the - 1);
hit = dvector(1, st&s _the - 1);
printf("\nWhat is the step size? ");
) scanf("%lt" &step_size);

void calc_hit(double L_cone, int refs)
/* This calculates the Eercentage of rays which hit the PMT after
a maximum of (refs) reflections

double tp, vt_1, vt_z, r_in, z_in, r_ap, z_ap;
int i, j, 1, m, flag, flag2, coeff_rad;

for (i =1; i < stps_the; i++)

* 'This for loop steps through a range of theta values around th_max,
the extreme incident angle *
geta[xl 6 (th_max) - (step_size * deg)*(stps_the - 2*i)/2;
{i] = 0;
tf("\n theta = %.4If, i = %u", theta[i}/deg, i);
or = 1; j < stps_apr; j++)

for(l--l 1<2;1+4=2)
/* This loop insures that both negative and positive values
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of aper_rad are used */
coeff_rad = (-1)*;
r_ap = coeff_rad*aper_rad[j];
z_ap = L_cone;
vt_r = sin(theta[i]);
vt_z = -cos(thetali]);

flag = pmt(vt_r, vt_z, r_ap, Z_ap);
if:gﬂag {flag2 =1; }
else

{
m = 0;
r_in = r_ap;
z_in = z_ap;
do

{
m++;
tp = inter_cp(r_in, z_in, vt_r, vt_z);
r_in = r_in + tp*vt_r;

Z_in = z_in + tp*vt_z;
norm_cp(&vt_r, &vt_z, r_in, z_in);
ﬂag = gmt(vt_r. vt_z, r_in, z_in);
if (flag

flag2 = 1;
break;

)
/* If the ray travels upward, it will always escape... */
if (vt_z > 0 il m == refs)

{
flag2 = 0;
break;

| } while (m < 1000);
if (flag2)

* If there is a hit, the percentage increases by the
following factor */
hit[i} += 1.0/(2*(stps_apr - 1.0));

}

D. pemev.c - located in /home/prochska/thesis/c/simult/3D/event

This program is very similar to trnrad.c, except it calculates the number of photoelectrons that one
would expect to record Pu' MeV of incident neutrino energy for érgiven PMT/light collector array. As with
tmrad.c, most of the defined values have been set to the Ufgrade design. The program assumes
that for every reflection that occurs off of a light cone, there is a 10% loss of light. Also, the program
calculates the lengths that a pboton will travel in scintillator and water and then calculates the absorption
coefficient as a function of average absorption len (8m for xylene, 60m for water). A further discussion
of the theory behind the program can be found in Section 2.E of this thesis.

The only difference between pemev.c and tmrad.c is the conversion of ’hits’ into a coverage which
translates directly into a number of photoelectrons detected. As developed in section ?? the finite solid angle
for a finite area element on the entrance aperture is (per total solid angle 4rx),

dQ cosBdl?

Q dnr?

Therefore, for each photon which hits the PMT, d/ needs to be calculated with reflection and absorption
losses taken into account. Than the coverage for all photons is summed giving the total coverage and
multiplied by the number of light cones used. The coverage is converted simply Pt%ﬂg)lMeV b_ly: multiplying
?y the )following factors: (10&)0 photons/Mev output)(.2 8uantum efficiency of (.6 PMT "practical
actor”

The parts of the program which deal with the above calculations are noted within the code and are
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fully described there. The routines which deterimine if a photon hits the PMT are the same as those in
trmrad.c and are not included.

/* This is pemev.c found in /home/prochska/thesis/c/simult/3D/event. A
detailed write-\:g of this Yrogram can be found in Appendix ?? of the 1993
Physics senior thesis by Jason X. Prochaska. This program is very similar
to trmrad.c found in /prochska/thesis/c/simult/3D, also described in
Appendix ??. Because of their close similarity most of the comments found in
trnrad.c are not included here.  */

#include <stdio.h>

#include <math.h>

#define aprim 9.5

#define Pi 3.141592654

f#tdefine deg (Pi/180)

#define END 1

#define n_scin 1.5

#define n_water 1.34

#define refl_cof .90

#define z_pmt -sqrt(121 - 9.5%9.5)

/* Global Variables */

double *aper_area, *aper_rad, ap_max, th_max, *r_sm, *z_sm, *rtio_sm, *r_cp,
*hts;

long stps_apr, stps_spz, stps_spr, stps_ang, nln_sm;

int length;

/* Global Function Declarations */
void cp_array(double L_cone);
int pmt(dg:bécl:e vi_x, )double vt_y, double vt_z, double x_ap, double y_ap,
uble z_ap);
double inter_cp(double x_cp, double y_cp, double z_cp, double vt_x,
double vt_y, double vt_z);
double inter_sm(double x_st, double y_st, double z_st, double vx, double vy,
double vz, int *ind_sm);
void nort(llls dOl)lble *vi_x, double *vt_y, double *vt_z, double x, double y,
uble z);
void norm_sm(ixlt ind_sm, double x, double y, double *vx, double *vy,

ul vz);
double abcf(double x_as, double y_as, double z_as, double vx, double vy,
double vz, double L._cone, double d_hyp, double d_apsp);
double *dvector(long nl, longonh);
void nrerror{char error_text{40]);

/* Main program */
void main ()
double L_cone, d_apsp, fv_eff, fv_r, N_ev, sum_Ec, *Ec, z, gamma;
int k, flag, npmt, i, refs;
/* Function Declarations */
void inpt(double *L_ip, double *d_ip, double *fv_ip, int *fl_ip, int *npm_ip,
int *refs);
void initQ;
double calc_Ec(int k, double fv_r, double L_cone, int fl_cn, double d_apsp,
double *N_ev, int refs);
/* Setting Initial Data */
inpt(&L_cone, &d_apsp, &fv_eff, &flag, &npmt, &refs);
stps_ang = 30;
aper_area = dvector(1, stps_apr - 1);
_rad = dvector(1, stps_al(:)r - 1)
= dvector(1, stps_spr + 20);
hts = dvector(1, stps_spz);
initQ;
printf("\nmade it through init\n");

k=0;
do {

k++;
fv_r = fv_eff*k/(stps_spr);
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/* sum_Ec is the coverage of that the light collector has as a function
of fiducial radius (imludinécreﬂectmn and absorption factors) */
sum_Ec = calc_Ec(k, fv_r, L_cone, flag, d_apsp, &N_ev, refs);
/* Ec converts the coverage into 1photoelectrons/Mev ¥/
Ec(k] = sum_Ec*npmt*(10000*.2*.6)/(N_ev);
/* Qutput */
printf("\n");
préx(x:tf("fv radius = %.4lf Photoelectrons = % .41f", fv_r,

. (kD;
} while(k < stps_spr + 2);

void inpt(double *L_ip, double *d_ip, double *fv_ip, int *fl_ip, int *np_ip,
int *refs)
/* Input routine */

double fv_rad, shield, th, fv_ff, L_cn, r, z, ratio;
int flag,j;
printf("\nHow many steps are in the aperture entrance? " );
scanf("%I1d", &stps_apr);
printf("\nHow many vertical steps in the sphere? ");
scanf("%1d", &stps_sg:g);
printf("\nWhat is the Fiducial Volume? (in cm) ");
scanf("%If", &fv_rad);
fv_ff = fv_rad*n_scin/n_water;
*fv_ip = fv_ff;
int("\nHow many radial steps in the sphere? ");

scanf("%1d", &stps_spr);
printf("\nWhat is the shielding length? (in cm) ");
scanf("%If", &shield);
printf("\nWhat is the length of the cone? (in cm) ");
scanf("%lf", &L _cn);
*L_ip=L_cn;
*d_ip = shield + fv_ff - L_cn;
printf("\nWhat is the aperture radius? (in cm) ");
scanf("%If", &ap_max);
printf("nHow many cones are there? ");
scanf("%d", np_ip); .

("\nHow many reflections do you want to consider? ");
scanf("%d", refs);
printf("nIs the cone an SM or CPC? (SM=1,CPC=0) ")
scanf("%d", &flag);
if (flag)

* This routine inputs the SM profile and normal data */

printf("How many lines of data are there? ");
scanf("%I1d", &nln_sm);

r_sm = dvector(], nln_sm);

z_sm = dvector(1l, nin_sm);

rtio_sm = dvector(l, nln_sm);

for(j = 1; j <= nln_sm; j++)

scanf("%Ilf %If %I, &r, &z, &ratio);

r_smfj] = r;
z_smlj} = z;
rtio_sm(j] = ratio;

| *f_ip = 0;

else

{

printf("\nWhat is theta max? (in degrees) “);
scanf("%If”, &th); e
th_max = th*deg;

cp_array(L_cn);

*flip=1;
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}

double calc_Ec(int k, double fv_r, double L_cone, int fl_cn, double d_apsp,
double *N_ev, int refs)
/* This procedure calculates sum_Ec with the necessary reflection and
absorption factors. See trorad.c for a more detailed description of
most of the parts of this routine. */

double x_sp, y_sp, z_sp, X_ap, y_ap, z_ap, theta, alph, csphi, d_hyp,
tp, vt_x, vt_y, vt_z, x_in, y_in, z_in, sum_Ec, Er, Ec, vo_x, vo_y,
vo_z, ab_cof;

int i, j, 1, m, flag, ind_sm, flag2;

sum_Ec = 0;
*N_ev=0;
for (i=1; i < stps_spz; i++)

z_sp = ((fv_r)*i*(2. 0)/(stps spz) - fv_r) + d_apsp + L_cone;

theta = acos(fabs(z_sp - d_apsp - L_cone)/fv_r);
i Bt
for (j = 1; j < stps_apr; j++)

for (1=0; 1 < stps_ang; l++)

alph = 2"'1*P1/ S_ang;

x_ap = aper_rad|[j]*cos(alph);
yap= aper radH]*sm(alph).
z_ap = L_cone;

Vi_X = X_ap - X_sp;
vy = y_ap;
vtz =7_ap - Z_Sp;

/* vo_x, vo_y, vo_z are used to save the intial direction of the ray from
the sphere to the aperture entrance. This information is needed to
calculate the absorption lengths */

VO_X = Vi_X;
vo_y = Vt_y;
vO_Z = Vi_Z;
ﬂag Opmt(vt X, Vt_y, Vt_z, X_ap, y_ap, Z_ap);
ms= ’
if (flag) flag2 = 1;
else
{ .
x_in = x_ap;
Yoin = 2 ap;
if (l_cn)
{ ?o
/* m is used to store the number of reflections */
m-+;
tp = inter_cp(x_in, y_in, z_in,
VLX, VLY, VI_2);

x_in = x_in + tp*vt_x;

y-in=y_in + p¥vt_y;

z_in = z_in + tp*vt_z;

norm._¢ cp(&vt) X, &vt_y, &vt_z, x_in, y_in,
zZ_i),

flag = pmt(yt)_x, vt_y, vt_z, x_in, y_in,
Z_1n);

i{f(ﬂag)

flag2 = 1;
break;
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)
/* If the ray travels upward, it will always escape. */
if (vt_z > 0 Il m == refs)

{
flag2 = 0;
break;

} } wh%le (m < 1000);

else
{ do
{
++;
= inter_sm(x_in, y_in, z_in, vt_x,
vt_y, vt_z, &ind_sm);

in = x_in + {p*vt_x;
_in = y_in + tp*vt_y;

in = z_in + tp*vi_z;

norm_sm(ind_sm, x_in, y_in, &vt_x,

&vt_y, &vt_z);
flag = pmi(vt_x, vt_y, vt_z, x_in, y_in,

Z_in);
if (flag I 'z_in < .008)
flag2 = 1;
break;

m
tp
X
b/
z

i}f (vt_z > 0 Il m = refs)
{ flag2 = 0;
} break;
} while (m < 1000);
if (flag2)

/* Here we calculate the value of Ec for an individual photon and
a finite area on the aperture mesh (aper_area) including reflection
and absorption factors */

/* Reflection */
Er = pow(refl_cof, m);

d_hyp = sqrt((x_sp - x_ap)*(x_sp - x_ap) +
y_ap*y_ap + (z_sp - z_ap)*(z_sp - z_ap));
csphi = ((z_sp - z_ap)/d_hyp);
/* Absorption */
ab_cof = abcf(x_sp, y_sp, z_sp, vo_x, vo_y,
vo_z, L_cone, d_hyp, d_apsp);
/* Ec is the coverage that a finite element of
aperture area (aper_area) has. By summing over the
entire entrance aperture, one calculates the coverage
of the cone */

Ec = Er*csphi*aper_areaf{j]*ab_cof
J(4*bi%g_hypra_hyp) |
/* Summing Ec for the overall coverage where sin(theta)
is the Monte Carlo factor appropriate for this
simulation. */
sum_Ec += Ec*sin(theta);

}
1!emrn sum_Ec;

double abcf(double x_as, double y_as, double z_as, double vx, double vy,
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double vz, double L_cone, double d_hyp, double d_apsp)
/* This procedure determines the absorption factors as a function of the
length that the ray travelled in the solved (inner vessel) and the length
of its path in water */

double a, b, 1:é zl1, 22, radic, rbag, z_bag, t, x_bn, y_bn, z_bn, cof,
sl, s2;
int flag;

/* Radius of the bag defined as 1m */
rbag = 100.0;
z_bag = d_apsp + L_cone;

/* Finds the intersection of the ray with the bag and chooses the lower
point *
a = vx*vx + vy*vy + vz*vz;
b = 2%(x_as*vx + y_as*vy + (z_as - z_bag)*vz);
¢ = x_as*x_as + y_as*y_as + (z_as - z_bag)*(z_as - z_bag) - rbag*rbag;

radic = b*b - 4¥*a%c;
ifls(radic < 0) nrerror("\n Error in abcf™);
else

{
21 = ((-b + sqrt(radic))/(2*a))*vz + z_as;
72 = ((-b - sqrt(radic))/(2*a))*vz + z_as;
if (z1 > z2) z_bn = z2;
else z_bn = zl;

}

/* Calculates the lengths travelled in the two mediums. sl is the length
in the scintillator and s2 is the length in the water (an average length of
L_cone is asumed for the distance the ray travels in the cone) */

t = (z_bn - z_as)/vz;

x_bn = x_as + t*vx;

y_bn = y_as + t*vy;

s1 = sqrt((x_as - x_bn)*(x_as = x_bn) + (y_as - y_bn)*(y_as - y_bn) +

(z_as - z_bn)*(z_as - z_bn));
s2 = d_hyp - sl + L_cone;

/* Calculates the absorption coefficient with average absorption lengths
of 8m and 60m for scintillator and water */
cof = (exp(-s1/800))*(exp(-s2/6000));
} return cof;

3. Fabrication Programs:

I wrote a number of programs for the fabrication of the wood molds and ribbing support structure.
I don't feel it is necessary to mclude most of them here as they are not necessarily directly applicable. 1 do,
however, include the pro used to create the SM Cone follower, offering it is an example of what needs
to be done to create similar pieces (e.g. the cutout and ribbing).

smfllwer.c - located in prochska/thesis/c/design. Basically, the only difference between this program and
simul¢_dat.c is in the fact that the tool used to cut the piece on the CNC Mill has a finite radius. One can
only stipulate the position and motion of the center of this tool and therefore in order to create the exact
shape, the tool must be kept the radial distance away from the curve (normal distance). The program is very
similar to simult_dat.c described above and the comments within the code are more than sufficient for
understanding the program.

/* This is program smfllwer.c located in esis/c/design
It was used to calculate the input data drives the CNC to create
a follower for the SM wood mold. Because this is America, the units are
in inches. NOTE: This routine was written before a subtle error was
discovered in the design of the SM cone. The two lines defining cathang and
cathrad ought to be chszln;/ged to match the definitions found in simult_dat.c
found in prochska/thesis/c/ctfcpc. It is not a error, but if one
were to use this program to create the exact SM cone, it would be necessary
to change those two definitions. A litte more detail about this program
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can be found in Appendix 3 of the 1993 Senior Physics Thesis by Jason X.
Prochaska. On the whole, this program is very similar to simult_dat.c */

#include <stdio.h>
#include <math.h>

#define aprim .095
#define Pi 3.141592654
#define deg (Pi/180.0)
#idefine NR_END 1
#tdefine n_scin 1.5
#define n_water 1.34

void main
double rfv, reff, 12, dcone, d1, thetal, theta2, phil, phi2, totang,

tang, x[50000], y[50000], diff, thetastop, sumang, cathang, cathrad,
covg, step, xlast, ylast, nmx, nmy, y2, dl, dpmt, ax, ay;

int i, j, k, cones, flag;

printf("\n Input the radius of the Fiducial Volume (in cm): ");
scanf("%If", &rfv);

reff = (rfv * n_scin * .3937) / n_water;

printf("\n The Effective Fiducial Volume is % .4f cm \n", reff);

printf("\n How many cones are to be used? ");
scanf("%I1d", &cones);

printf("n What is the shielding length? (in cm) ");
scanf("%If", &dpmt);
2 = reff + dpm¢t*.3937;

cathang = 60 * deg;
catbxag = 11.0*.39g37;
y2 =12 + cos(cathang)*cathrad;

y[1] = cathrad * cos(cathang);
x[1] = cathrad * sin(cathang);

xlast = -100;
ylast =1-100;
step = .61;
dl = 0.003;
k =80;

dcone = sqrt(x[1]*x[1] + (¥(1] - y2)*(y(1] - y2));
thetastop = asm(reffldcone{+ asin(x[1)/dcone);

1{’01' G(i=1;1i<=50000; i++)

a1 = sqre(x(i]*xfi] + yGiT*y[il:
deone = sqri(x(i]*xil + (30l - y2)* Gl - y2));

thetal = asin(cathrad/d1);

theta2 = asin(reff/dcone);

phil = asin(x[i}/d1);

phi2 = asin(x[i)/dcone);

i{f (phil + thetal > (90*deg - cathang))

totang = (Pi - thetal - theta2 - phil - phi2) * .50;
tang = totang + phil + thetal - Pi/2;

sumang = atan((x(i] + x[1]¥(y(i] - y[1]));
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i{f (sumang < thetastop)
flag = 0;
break;

}
totang = (Pi - sumang - theta2 - phi2) * .50;
} tang = totang + sumang - Pi/2;

if ((x[i] - xlas)*(x[i] - xlast) + (y[i] - ylast)*(y[i] - ylast)
> (step * step))

k += 10;
nmx = -cos(tang);
nmy = sin(tangg;

/* Because the tool used to make the follower has a finite
radius = .375 inches, and becuase we can only control the
position of the center of this tool, we must move a normal
distance .375 inches normal off the curve. nmx and nmy define
the normal direction and ax and ay use this direction to
calculate where the center of the tool needs to be. */

ax = x[i] - nmx*(.375) - 2.26;
ay = (;'[1] y[1D) - (nmy)*(.375);

printf
prmtf("N%uX% 41fY % 41f", k, ay, ax);
xlast = x[i];

} ylast = y[i};

j=i+ 1
H] = x[i] + sin(tang)*dl;
y(l = yli] + cos(tang)*dl;
if (flag)
l printf("\n We never reached the end.");

t{alse
nmx = -cos(tan ).
nmy = sin(tan
covg =320* (l 0 - cos(phi2)) * 100;
pnntf("\n x=%4 y= %4 %A %4, x[i], yli] - y[1],

prmtf("\n \Xle have reached the end of the profile. \n");
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