Final results of Borexino on CNO solar neutrinos D. Basilico et al. (Borexino Collaboration) Phys. Rev. D 108, 102005 – Published 14 November 2023 DOI: 10.1103/PhysRevD.108.102005 Abstract In this paper, we report the first measurement of CNO solar neutrinos by
Improved Measurement of CNO Solar Neutrinos and Its Implications for the SSM
Improved Measurement of Solar Neutrinos from the Carbon-Nitrogen-Oxygen Cycle by Borexino and Its Implications for the Standard Solar Model Phys. Rev. Lett. 129, 252701 (2022) – Published 12 December 2022 [DOI:10.1103/PhysRevLett.129.252701] This paper have been been highlighted. See Viewpoint: “Elemental
The Sun may have more carbon and nitrogen than previously thought
Latest Borexino CNO pre-print results(1) featured on Science News: “Neutrinos hint the sun has more carbon and nitrogen than previously thought Figuring out our star’s makeup is crucial for understanding the entire universe” By Ken Croswell JUNE 16, 2022 AT
Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun (Nature cover story)
For most of their existence, stars are powered by fusion of hydrogen into helium via two processes that are well understood theoretically: the proton–proton chain, dominant in relatively small stars like our Sun, and the Carbon–Nitrogen–Oxygen cycle, which is prevalent in bigger, more massive stars. Borexino got the first experimental evidence of neutrinos emitted by the CNO cycle in the Sun core.
Comprehensive measurement of pp-chain solar neutrinos
Comprehensive measurement of pp-chain solar neutrinos Nature volume 562, pages 505–510 (2018) Published: 24 October 2018 [doi:10.1038/s41586-018-0624-y] (full text here) Data availability The datasets generated during the current study are freely available: see below. Additional information is available from the Borexino Collaboration